

The Reactivity of Vinyl Cations in TM-Free Condition

Reporter: Shi Yixiang (石逸翔) Supervisor: Prof. Zhang Junliang Dr. Yang Junfeng

2023-03-31

- 1. Introduction
- 2. The Reactivity of Vinyl Cations in TM-Free Condition
 - 2.1 Vinyl Cations Produced by Alkynyl Group
 - 2.2 Vinyl Cations Produced by α -diazo Compounds
 - 2.3 Vinyl Cations Produced in Situ by Vinyl Compounds
- 3. Summary and Prospection

- The Reactivity of Vinyl Cations in TM-Free Condition
 2.1 Vinyl Cations Produced by Alkynyl Group
 2.2 Vinyl Cations Produced by α-diazo Compounds
 - 2.3 Vinyl Cations Produced in Situ by Vinyl Compounds
- 3. Summary and Prospection

Tricoordinated carbocation & dicoordinated carbocation

high s orbital character minimized resonance & hyperconjugation chanllenging formation unknown in asymmetric catalysis

D. A. Klumpp, et. al. *Chem. Rev.* **2013**, *113*, 6905–6948. S. Gao, et. al. *Angew. Chem. Int. Ed.* **2018**, *57*, 16942–16944.

Carbocation:

- Low intrinsic barrier
- Stable intermediate
- Multiple reactions

Vinyl cation:

- ➢ High intrinsic barrier
- Unstable intermediate
- Possibility of C-H insertion

H. O. Smith, et. al. Angew. Chem. Int. Ed. 1972, 11, 635-636.

S. Searles, et. al. J. Am. Chem. Soc. **1944**, 66, 686–689. G. Cseh, et. al. *Helv. Chim. Acta.* **1964**, 47, 1590–1602.

Vinyl cation by alkyne and allene with gold catalysis

K. N. Houk, F. D. Toste, et. al. J. Am. Chem. Soc. **2008**, 130, 4517–4526. R. S. Liu, et. al. J. Org. Chem. **2008**, 73, 4907–4914. Vinyl cation formation and nucleophilic attack

Vinyl cation by alkyne with copper catalysis

M. J. Gaunt, et. al. J. Am. Chem. Soc. **2012**, 134, 10773–10776. M. J. Gaunt, et. al. J. Am. Chem. Soc. **2013**, 135, 12532–12535.

The Reactivity of Vinyl Cations in TM-Free Condition 2.1 Vinyl Cations Produced by Alkynyl Group 2.2 Vinyl Cations Produced by α-diazo Compounds

- 2.3 Vinyl Cations Produced in Situ by Vinyl Compounds
- 3. Summary and Prospection

Ring closing reaction of alkyne with carbocation

Y. Yamamoto, et. al. Angew. Chem. Int. Ed. 2009, 48, 5893–5896.
F. Rodr guez, et. al. Org. Lett. 2018, 20, 1659–1662.

2.1 Vinyl Cations Produced by Alkynyl Group

Ring closing reaction of alkyne with alkene and allene

Y. Yamamoto, et. al. J. Am. Chem. Soc. **2010**, 132, 5590–5591. Z. X. Yu, et. al. J. Org. Chem. **2018**, 83, 7633–7647. **Rearrangement reaction of alkyne with sulfoxide**

OH

SPh

Selected examples

93%

32%

N. Maulide, et. al. Adv. Synth. Catal. 2017, 359, 64–77.

96%

Selected examples

63%

SPh

2.1 Vinyl Cations Produced by Alkynyl Group

N. Maulide, et. al. Adv. Synth. Catal. 2017, 359, 64–77.

Construction of axis chiral compounds

P. Y. Toullec, et. al. Chem. Eur. J. 2020, 26, 16266–16271.

The Reactivity of Vinyl Cations in TM-Free Condition
 2.1 Vinyl Cations Produced by Alkynyl Group

2.2 Vinyl Cations Produced by α -diazo Compounds

- 2.3 Vinyl Cations Produced in Situ by Vinyl Compounds
- 3. Summary and Prospection

Vinyl cation by α -diazo ester

B. L. Williamson, et. al. J. Am. Chem. Soc. **1996**, 118, 1-11. M. Brewer, et. al. J. Am. Chem. Soc. **2008**, 130, 3766-3767.

Vinyl cation by α -diazo ketone

Vinyl cation by α -diazo amide

M. Brewer, et. al. J. Am. Chem. Soc. 2019, 141, 3558-3565.

2.2 Vinyl Cations Produced by α-diazo Compounds

M. Brewer, et. al. J. Am. Chem. Soc. 2019, 141, 3558-3565.

2.2 Vinyl Cations Produced by α-diazo Compounds

M. Brewer, et. al. J. Am. Chem. Soc. 2019, 141, 3558-3565.

2.2 Vinyl Cations Produced by α-diazo Compounds

M. Brewer, et. al. J. Am. Chem. Soc. 2019, 141, 3558-3565.

- 2. The Reactivity of Vinyl Cations in TM-Free Condition
 - 2.1 Vinyl Cations Produced by Alkynyl Group
 - 2.2 Vinyl Cations Produced by α-diazo Compounds
 - 2.3 Vinyl Cations Produced in Situ by Vinyl Compounds
- 3. Summary and Prospection

H. M. Nelson, et. al. Science. 2017, 355, 1403–1407.

$[Ph_{3}C]^{+}$ $[HCB_{11}CI_{11}]^{-}$ (5 mol%) ÷D₁ i Pr₃SiH (10 mol%) cyclohexane-d₁₂, 70 °C, 13 h TMS H/D D/H 49% 15% Ď/Н R₃Si-F rms 16% Fluoride abstracton $[Ph_{3}C]^{+}$ $[HCB_{11}CI_{11}]^{-}$ (5 mol%) phenylcyclohexane ^{*i*}Pr₃SiH (10 mol%) and R₃SiH TMS cyclohexane : cyclohexane-d₁₂ (1:1) phenylcyclohexane-d₁₁ 70 °C, 13 h $K_{\rm H}/K_{\rm D} = 1.08$

SiMe₃ Ð

aryne intermediate not existed

2.3 Vinyl Cations Produced in Situ by Vinyl Compounds

Aryl Cation

H. M. Nelson, et. al. Science. 2017, 355, 1403–1407.

K. N. Houk, H. M. Nelson, et. al. Science, 2018, 361, 381–387.

K. N. Houk, H. M. Nelson, et. al. *Science*, **2018**, *361*, 381–387.

Mechanism for C-H Insertion

Isotopic Labeling Studies

K. N. Houk, H. M. Nelson, et. al. Science, 2018, 361, 381–387.

Entry	Substrate	Solvent	Temp. (°C)	Product	
1	OTf	C_6H_{12}	30	Cy 85%	
2	OTf	C ₆ H ₁₂	30	Cy 40% 39%	
3	OTf	C ₆ H ₁₂	70	су су 16% 19%	
4	OTf	CHCl ₃ /C ₆ H ₁₂	-40	← + ← Cy Cy 17% 34%	

CHCl₃ : attenuate hyperconjugative effects of cyclohexene

unsymmetrically bridged nonclassical ion

Me

hydride approach

leading to branch

hydride approach leading to end

K. N. Houk, H. M. Nelson, et. al. Science, 2018, 361, 381–387.

K. N. Houk, H. M. Nelson, et. al. J. Am. Chem. Soc. 2019, 141, 9140-9144.

B Generation of $[Li]^+ [B(C_6F_5)_4]^-$ under reaction condition

 $[Li]^+ [B(C_6F_5)_4]^-$

[Li]⁺ [OTf]⁻ +

K. N. Houk, H. M. Nelson, et. al. J. Am. Chem. Soc. 2019, 141, 9140-9144.

15%

D Evidence of a vinyl cation intermediate

E Evidence supporting concerted C-H insertion

A Stoichiometric experiments with lithium urea salt

23% yield

B Attempted cyclopentene formation from propylated ester triflate

C Proposed pathway of the C-C bond forming evnt of vinylogous acyl triflates

K. N. Houk, H. M. Nelson, et. al. Angew. Chem. Int. Ed. 2022, 61, e202113972.

B Unsymmetric boronic ester reactivity

12% (5.1:1 styrene products C1=C2:C2=C3)

K. N. Houk, H. M. Nelson, et. al. Angew. Chem. Int. Ed. 2022, 61, e202113972.

K. N. Houk, H. M. Nelson, et. al. Angew. Chem. Int. Ed. 2022, 61, e202113972.

The first enantioselective version of vinyl cations

Entry	IDPi	Х	Silane	Yield	ee
1	A1B1	Н	allyl TIPS	56%	52%
2	A1B2	CF_3	allyl TIPS	79%	85%
3	A1B3	CF_3	allyl TIPS	72%	60%
4	A1B4	CF_3	allyl TIPS	11%	84%
5	A1B5	CF_3	allyl TIPS	84%	85%
6	A1B6	CF_3	allyl TIPS	72%	91%
7	A1B6	CF_3	allyl TMS	34%	89%
8	A1B6	CF_3	allyl Si(TES) ₃	91%	91%
9	A1B6	CF_3	none	0%	-

K. N. Houk, H. M. Nelson, et. al. Science, 2022, 378, 1085–1091.

K. N. Houk, H. M. Nelson, et. al. Science, 2022, 378, 1085–1091.

- The Reactivity of Vinyl Cations in TM-Free Condition
 2.1 Vinyl Cations Produced by Alkynyl Group
 2.2 Vinyl Cations Produced by α-diazo Compounds
 - **2.3 Vinyl Cations Produced in Situ by Vinyl Compounds**
- 3. Summary and Prospection

3. Summary and Prospection

More new methods of producing vinyl cations Mo

More reactivity of vinyl cations

The enantioselective version of vinyl cations are just booming!

More methods to get vinyl cation

More stable structure of vinyl cation

A. Sekiguchi, et. al. J. Am. Chem. Soc. 2012, 134, 886–889.
C. W. So, et. al. Angew. Chem. Int. Ed. 2022, 61, e202212842.

More reactions of vinyl cation

Carbocation chemistry Friedel–Crafts Alkylation S_N1 and S_N1' Reactions Wagner–Meerwein Rearrangements Ritter Reaction Schmidt Reaction Pinacol and Prins-Pinacol Rearrangements Nazarov Reaction

Thanks For Your Attention