

Application of Bioorthogonal Cleavage Reactions (BCRs) in Prodrug Activation

Reporter: Shanshan Wang Supervisor: Prof. Shengming Ma Prof. Qin Chen

Oct 08, 2021

01 **Background**

The Diversity of BCRs in Prodrug Activation

- 2.1 small molecule-triggered cleavage reactions
- 2.2 transition metal-triggered cleavage reactions

Summary and Perspective

Bioorthogonal reactions

Definition:

Bioorthogonal reactions refers to any chemical reaction that proceeds rapidly and selectively in biological environments without side reactions towards endogenous functional groups.

Reaction characteristics:

- \checkmark bioorthogonality
- \checkmark biostability

 \checkmark nontoxicity

 \checkmark appropriate pharmacokinetics (in vivo)

 \checkmark fast kinetics

Reaction subjects and environment:

⁰¹ **Classification of bioorthogonal reactions (in chemistry)**

- 1. Bertozzi, C. R. et al. *Science.* **1997**, *276*, 1125-1128.
- 2. Bertozzi, C. R. et al. *Science.* **2000**, *287*, 2007-2010.
- 3. Davis, B. G. et al. *J. Am. Chem. Soc.* **2013**, *135*, 12156-12159.
- 4. Bertozzi, C. R. et al. *J. Am. Chem. Soc.* **2004**, *126*, 15046-15047.
- 5. Lin, Q. et al. *Angew. Chem. Int. Ed.* **2012**, *124*, 10752-10756.
- 6. Meldal, M. et al. *J. Org. Chem.* **2002**, *67*, 3057-3064.
- 7. Davis, B. G. et al. *J. Am. Chem. Soc.* **2008**, *130*, 13518-13519.

⁰¹ **Classification of bioorthogonal reactions (in application)**

 \triangleright Bioorthogonal ligation reactions

⁰¹ **Application of bioorthogonal cleavage reactions (BCRs)**

Protein activation Cell surface engineering

Prodrug activation

⁰¹ **Introduction of prodrug**

Definition:

Prodrugs are molecules with little or no pharmacological activity that are converted to the active parent drug in vivo by enzymatic or chemical reactions or by a combination of the two.

⁰¹ **Advantages of BCRs in prodrug activation**

Enzymatic release

Challenge: tumor microenvironment heterogeneity

Chemical release

Advantages:

- More stability
- Selective activation at the tumor site
- Low toxicity to normal cells
- \bullet ………

⁰¹ **Classification of BCRs in prodrug activation**

Small molecule-triggered cleavage reactions

10

⁰¹ **Classification of BCRs in prodrug activation**

Transition metal-triggered cleavage reactions Pd Ru Au Pt

Staudinger reaction

Significance: staudinger reaction was among the first examples of BCRs being used for prodrug activation

Disadvantages:

- The phosphine reagent is not stable and potentially toxic
- The reaction rate is very slow, $k_2 \approx 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$

Trans-cyclooctene-involved reactions (TCO and PAB)

Cytotoxicity assay of B16-OVA cells

Trans-cyclooctene-involved reactions (TCO and PAB)

Gamble, A. B. et al. *Chem. Sci*. **2015**, *6,* 1212-1218.

Gamble, A. B. et al. *Bioconjug. Chem.* **2018**, *29,* 324-334.

Disadvantages:

- Azide prodrug is not stable
- Slow reaction rate or slow release, $k_2 \approx 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$
- Optimization of the reaction is complex and difficult

Trans-cyclooctene-involved reactions (TCO and Tz)

[a] No release of 14-Dox from 8 a-Dox was observed at 37°C in PBS (72 h) or serum (24 h).

Faster reaction rates do not necessarily lead to increased drug release rates!

Robillard, M. S. et al. *Angew. Chem. Int. Ed.* **2013**, *125*, 14362-14366.

Trans-cyclooctene-involved reactions (TCO and Tz)

Combining EWG and non-EWG on the same tetrazine ring allows for an optimal balance of cycloaddition and degradation rates

Trans-cyclooctene-involved reactions (TCO and Tz)

Trans-cyclooctene-involved reactions (TCO and Tz)

Proposed mechanism:

Trans-cyclooctene-involved reactions (TCO and Tz)

Trans-cyclooctene-involved reactions (TCO and Tz)

Advantages:

- Fast reaction rates and fast release rates, $k_2 = 1-10^4 \text{ M}^{-1} \text{ s}^{-1}$
- Multiple compatible systems

Disadvantages:

- Incomplete release
- Synthesis of tetrazine has some difficulty

Tetrazine-involved reactions (Tz and vinyl ether)

Devaraj, N. K. et al. *J. Am. Chem. Soc.* **2016**, *138*, 11429-11432. Bradley, M. et al. *Chem. Sci.* **2018**, *9*, 7198−7203.

Tetrazine-involved reactions (Tz and vinyl ether)

Tetrazine-involved reactions (Tz and vinyl ether)

Franzini, R. M. et al. *Chem. Comm.* **2017**, *53*, 6271-6274. Bonger, K. M. et al. *Org. Biomol. Chem.* **2019**, *17*, 8816-8821.

2.1

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

Anticancer activities and NO release behaviors of 3a and TZ liposomes in a zebrafish embryos model

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

- Mutual deprotection for dual pre-drug activation Mild reaction rate, $k_2 \approx 1 \text{ M}^{-1} \text{ s}^{-1}$
- Synthesis of isocyanide is easy

Tetrazine-involved reactions (Tz and cyclooctyne)

Alkyne-involved reactions (Alkyne pair and cyclopentadienone)

22a+21a (1 μM) 22a+21a (5 μM) 22b+21b (1 μM)22b+21b (5 μM)

Confocal images of RAW264.7 cells treated with compounds 21b (5 μ M) and 22b (2.5 μ M) and MT-deep red (50 nM)

Effect of CO prodrugs on APAP-induced liver injury

Alkyne-involved reactions (Alkyne and cyclopentadienone)

Meggers, E. et al. *Angew. Chem. Int. Ed.* **2014**, *53*, 10536-10540.

Ru

2.2 **Transition metal-triggered cleavage reactions**

Catalytic cycle:

Proposed mechanism:

Pd

Cytotoxicity assay of BxPC-3 cells

Pd

Summary and Perspective

Staudinger reaction

Disadvantages: Significance: staudinger reaction was among the first examples of BCRs being used for prodrug activation

- The phosphine reagent is not stable and potentially toxic
- The reaction rate is very slow, $k_2 \approx 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$

Trans-cyclooctene-involved reactions

Disadvantages:

- Azide prodrug is not stable
- Slow reaction rate or slow release, $k_2 \approx 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$

Advantages:

Disadvantages:

- Fast reaction rates and fast release rates, $k_2 = 1 - 10^4 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$
- Multiple compatible systems
- Incomplete release • Synthesis of tetrazine has some difficulty

Tetrazine-involved reactions

Advantages:

• The application of the reaction is extended to release CO

Alkyne-involved reactions

Advantages:

- The transition metal can activate the prodrug as a catalyst on a continuous basis
- Transition-metal-triggered cleavage reactions can be heterogeneous reaction systems

Disadvantages:

- Mild reaction rate, $k_2 \approx 1$ -10 M⁻¹ s⁻¹
- Potential cytotoxicity
- Instability of metal compounds

This field of using bioorthogonal cleavage reactions in prodrug applications is still in its infancy

- ➢ Optimizing reaction to improve reaction rates and release rates
- \triangleright Optimizing reaction to meet desired pharmacokinetic properties and safety criteria
- \triangleright Increasing the stability of the trigger agent and simplifying the synthesis method
- \triangleright Expanding reaction types and non-interfering reaction combination

