

Application of Bioorthogonal Cleavage Reactions (**BCRs**) in **Prodrug Activation**

Reporter: Shanshan Wang

Supervisor: Prof. Shengming Ma Prof. Qin Chen

Oct 08, 2021

01 Background

The Diversity of BCRs in Prodrug Activation

- 2.1 small molecule-triggered cleavage reactions
- 2.2 transition metal-triggered cleavage reactions

Summary and Perspective

Background

Bioorthogonal reactions

Bioorthogonal reactions

Definition:

Bioorthogonal reactions refers to any chemical reaction that proceeds rapidly and selectively in biological environments without side reactions towards endogenous functional groups.

Reaction characteristics:

- \checkmark bioorthogonality
- ✓ biostability

 \checkmark nontoxicity

✓ appropriate pharmacokinetics (in vivo)

 \checkmark fast kinetics

Reaction subjects and environment:

Classification of bioorthogonal reactions (in chemistry)

- Bertozzi, C. R. et al. *Science*. **1997**, *276*, 1125-1128.
 Bertozzi, C. R. et al. *Science*. **2000**, *287*, 2007-2010.
 Davis, B. G. et al. *J. Am. Chem. Soc.* **2013**, *135*, 12156-12159.
- 4. Bertozzi, C. R. et al. J. Am. Chem. Soc. **2013**, 155, 12150-12159.
- Bertozzi, C. R. et al. J. Am. Chem. Soc. 2004, 120, 15040-1504
 Lin, Q. et al. Angew. Chem. Int. Ed. 2012, 124, 10752-10756.
- 6. Meldal, M. et al. J. Org. Chem. 2002, 67, 3057-3064.
- 7. Davis, B. G. et al. J. Am. Chem. Soc. **2008**, 130, 13518-13519.

Classification of bioorthogonal reactions (in application)

Bioorthogonal ligation reactions

01

Application of bioorthogonal cleavage reactions (BCRs)

Protein activation

Cell surface engineering

Prodrug activation

Drug

01

Introduction of prodrug

Definition:

Prodrugs are molecules with little or no pharmacological activity that are converted to the active parent drug in vivo by enzymatic or chemical reactions or by a combination of the two.

 \succ To increase stability and solubility

.OH

′ОН

- \succ To increase therapeutic efficacy
- ➤ To improve bioavailability

Advantages of BCRs in prodrug activation

Enzymatic release

Challenge: tumor microenvironment heterogeneity

Chemical release

Advantages:

- More stability
- Selective activation at the tumor site
- Low toxicity to normal cells
-

Classification of BCRs in prodrug activation

Small molecule-triggered cleavage reactions

10

Classification of BCRs in prodrug activation

Transition metal-triggered cleavage reactions

01

Triarylphosphine as the protecting group

0

O.

H,Ph

Ph

NH

Ř

Staudinger reaction

Significance: staudinger reaction was among the first examples of BCRs being used for prodrug activation

Disadvantages:

- The phosphine reagent is not stable and potentially toxic
- The reaction rate is very slow, $k_2 \approx 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$

Trans-cyclooctene-involved reactions (TCO and PAB)

Cytotoxicity assay of B16-OVA cells

Compound	$IC_{50}(\mu M)$	
Doxorubicin 15	0.71 (0.66-0.77)	
Dox-prodrug 9	49.9 (42.5-58.5)	
$9 + cis$ -cyclooctenol (100 μ M)	55.0 (38.0-79.5)	
9 + <i>trans</i> -cyclooctenol 10 (100 μ M)	0.96 (0.91-1.01)	

Trans-cyclooctene-involved reactions (TCO and PAB)

Stability (% Intact) ^{a,b} of Prodrug 9 (100 μM)		
Time (h)	50% Serum:PBS	PBS only
0	100	100
4	95.3 ± 8.4	105.7 ± 20.6
24	68.0 ± 14.7	121.1 ± 36.0
48	55.6 ± 13.2°	111.9 ± 56.2

2.1

Gamble, A. B. et al. Chem. Sci. 2015, 6, 1212-1218.

Gamble, A. B. et al. Bioconjug. Chem. 2018, 29, 324-334.

Disadvantages:

- Azide prodrug is not stable
- Slow reaction rate or slow release, $k_2 \approx 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$
- Optimization of the reaction is complex and difficult

Trans-cyclooctene-involved reactions (TCO and Tz)

[a] No release of **14-Dox** from **8a-Dox** was observed at 37 °C in PBS (72 h) or serum (24 h).

Faster reaction rates do not necessarily lead to increased drug release rates !

Robillard, M. S. et al. Angew. Chem. Int. Ed. 2013, 125, 14362-14366.

Trans-cyclooctene-involved reactions (TCO and Tz)

Combining EWG and non-EWG on the same tetrazine ring allows for an optimal balance of cycloaddition and degradation rates

Trans-cyclooctene-involved reactions (TCO and Tz)

2.1

Trans-cyclooctene-involved reactions (TCO and Tz)

Proposed mechanism:

Mikula, H. et al. J. Am. Chem. Soc. 2020, 142, 19132-19141.

Trans-cyclooctene-involved reactions (TCO and Tz)

Trans-cyclooctene-involved reactions (TCO and Tz)

Advantages:

- Fast reaction rates and fast release rates, $k_2 = 1-10^4 \text{ M}^{-1} \text{ s}^{-1}$
- Multiple compatible systems

Disadvantages:

- Incomplete release
- Synthesis of tetrazine has some difficulty

Tetrazine-involved reactions (Tz and vinyl ether)

Tetrazine-involved reactions (Tz and vinyl ether)

Tetrazine-involved reactions (Tz and vinyl ether)

Franzini, R. M. et al. *Chem. Comm.* **2017**, *53*, 6271-6274. Bonger, K. M. et al. *Org. Biomol. Chem.* **2019**, *17*, 8816-8821.

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

Anticancer activities and NO release behaviors of 3a and TZ liposomes in a zebrafish embryos model

2.1

Small molecule-triggered cleavage reactions

Tetrazine-involved reactions (Tz and 3-isocyanopropyl group)

- Mutual deprotection for dual pre-drug activation Mild reaction rate, $k_2 \approx 1 \text{ M}^{-1} \text{ s}^{-1}$
- Synthesis of isocyanide is easy

Tetrazine-involved reactions (Tz and cyclooctyne)

Alkyne-involved reactions (Alkyne pair and cyclopentadienone)

22a+21a (1 μ M) 22a+21a (5 μ M) 22b+21b (1 μ M) 22b+21b (5 μ M)

Confocal images of RAW264.7 cells treated with compounds 21b (5 $\mu M)$ and 22b (2.5 $\mu M)$ and MT-deep red (50 nM)

Effect of CO prodrugs on APAP-induced liver injury

Alkyne-involved reactions (Alkyne and cyclopentadienone)

Transition metal-triggered cleavage reactions

Meggers, E. et al. Angew. Chem. Int. Ed. 2014, 53, 10536-10540.

Ru

Transition metal-triggered cleavage reactions

Catalytic cycle:

Proposed mechanism:

Pd

Transition metal-triggered cleavage reactions

Cytotoxicity assay of BxPC-3 cells

Transition metal-triggered cleavage reactions

H₂O[´] OH₂

 OH_2

Transition metal-triggered cleavage reactions

2.2

Pt

Summary and Perspective

Staudinger reaction

Significance: staudinger reaction was among the first examples of BCRs being used for prodrug activation Disadvantages:

- The phosphine reagent is not stable and potentially toxic
- The reaction rate is very slow, $k_2 \approx 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$

Trans-cyclooctene-involved reactions

Disadvantages:

- Azide prodrug is not stable
- Slow reaction rate or slow release, $k_2 \approx 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$

Advantages:

Disadvantages:

- Fast reaction rates and fast release rates, $k_2 = 1 - 10^4 \text{ M}^{-1} \text{ s}^{-1}$
- Multiple compatible systems
- Incomplete releaseSynthesis of tetrazine has some difficulty

Small molecule-triggered cleavage reactions

Tetrazine-involved reactions

Alkyne-involved reactions

Advantages:

• The application of the reaction is extended to release CO

Transition metal-triggered cleavage reactions

Advantages:

- The transition metal can activate the prodrug as a catalyst on a continuous basis
- Transition-metal-triggered cleavage reactions can be heterogeneous reaction systems

Disadvantages:

- Mild reaction rate, $k_2 \approx 1-10 \text{ M}^{-1} \text{ s}^{-1}$
- Potential cytotoxicity
- Instability of metal compounds

This field of using bioorthogonal cleavage reactions in prodrug applications is still in its infancy

- Optimizing reaction to improve reaction rates and release rates
- > Optimizing reaction to meet desired pharmacokinetic properties and safety criteria
- Increasing the stability of the trigger agent and simplifying the synthesis method
- Expanding reaction types and non-interfering reaction combination

