Consecutive visible light-induced electron transfer processes using organic photocatalysts

Speaker: Mengmeng Xu

Supervisor: Dr. Quan Cai

2. Consecutive visible light-induced electron transfer (ConPET)

Reductions driven by ConPET processes

Oxidations driven by ConPET processes

3. Conclusion

Conventional visible light-induced electron transfer

Because this process only accepts one photon, the redox potential of the photocatalyst only ranges from −2 to +2 V.

> Schultz, D. M.; Yoon, T. P. *Science* **2014**, *343*, 1239176 Targos, K.; Williams, O. P.; Wickens Z. K. *J. Am. Chem. Soc*. **2021**, *143*, 4125

The reduction potential of the excited Ir(ppy)₃ is only -1.7 V, which can only reduce specific aryl iodides and can't reduce aryl bromides and chlorides at all.

Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. *Nat. Chem.* **2012**, *4*, 854

Consecutive visible light-induced electron transfer

The redox potential increases because the photocatalyst has absorbed the energy of two photons. This advantage grants ConPET strategy a broader scope of substrates than Conventional PET.

Hence, ConPET is more promsing in synthetic applications

Targos, K.; Williams, O. P.; Wickens, Z. K. *J. Am. Chem. Soc*. **2021**, *143*, 4125

perylene diimide (PDI)

König Burkhard
Science 2014, 725

Rh-6G

König Burkhard ACIE, 2016, 55, 7676

Duan Chunying JACS, 2016, 138, 3958

dicyanoanthracene (DCA)

Pérez-Ruiz Raul Chem. Eur. J. 2018, 24, 105

dihydroxyanthraquinone (Aq-OH)

König Burkhard Eur. J. Org. Chem. 2018, 34

Mes-Acr-BF $_A$

Nicewicz David A. Nature 2020, 76

Benzo[ghi]perylene (BPI)

Miyake Garret M. JACS, 2020, 142, 13573

N-phenylphenothiazine (PTH)

ChemCatChem 2018, 10, 2955;
ACIE, 2020, 59, 300; JACS, 2021, 143, 4125

2. Consecutive visible light-induced electron transfer (ConPET)

Reductions driven by ConPET processes

Oxidations driven by ConPET processes

3. Conclusion

perylene diimide (PDI)

König Burkhard
Science 2014, 725

The spectrum of **PDI**

A: Changes in the fluorescence spectra of PDI upon successive addition Et_3N in DMF;

B: Changes in the absorption spectra of PDI in the presence of Et_3N .

The reduction potential of **PDI**^{$-$} is only −0.37 V, which is not enough to reduce the aryl halide.

Control experiments

 $*$ 10 mol% catalyst and 16 equiv of Et_3N were employed.

* Reaction was performed in DMF.

Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. *Science* **2014**, *346*, 725

Mechanism exploration

Diethylamine may come from the hydrogen abstraction of the triethylamine radical cation by aryl radical intermediate, affording the iminium intermediate which is hydrolyzed to diethylamine.

Proposed mechanism

S-H, solvents

Ghosh, I.; Ghosh, T.; Bardagi, J. I.; K önig, B. *Science* **2014**, *346*, 725

König Burkhard
ACIE, **2016**, 55, 7676

The spectrum of **Rh-6G**

A: Changes in the fluorescence spectra of **Rh-6G** upon successive addition DIPEA in DMSO;

B: The absorption spectra of **Rh-6G** in the presence of DIPEA.

Rh-6G absorbs both in the green (530 nm) and blue (455 nm) regions, while **Rh-6G•−** only absorbs in the blue (455 nm) region.

Ghosh, I.; König, B. *Angew. Chem. Int. Ed.,* **2016**, *55*, 7676

Controlled bond activation through light-color regulation of redox potentials

$$
E_{\rm Rh-6G/Rh-6G} = -1.0 \text{ V}; E_{\rm Rh-6G/Rh-6G} = -2.4 \text{ V}.
$$

Ghosh, I.; K önig, B. *Angew. Chem. Int. Ed.,* **2016**, *55*, 7676

Mono- or di-substitutions

Ghosh, I.; K önig, B. *Angew. Chem. Int. Ed.,* **2016**, *55*, 7676

Proposed mechanism

Ghosh, I.; K önig, B. *Angew. Chem. Int. Ed.,* **2016**, *55*, 7676

Zn-PDI

Duan Chunying
JACS, **2016**, *138*, 3958

Synthesis of **Zn-PDI** (a heterogeneous photocatalyst)

Single crystal X-ray crystallography of **Zn-PDI**

Duan, C.Y. et al. *J. Am. Chem. Soc.* **2016**, *138*, 39588

Structural features of **Zn-PDI**

Ball-and-stick representation of PDI fragments in 2D layer

Each zinc ion was coordinated by three carboxylic groups from three deprotonated **PDI** ligands and one water molecule. Because of strong $\pi \cdot \cdot \pi$ interactions between **PDIs**, the geometry of **ZnPDI** is a distorted tetrahedron.

Duan, C.Y. et al. *J. Am. Chem. Soc.* **2016**, *138*, 39588

The spectrum of **Zn-PDI**

The absorption spectra of Zn-PDI in the presence of Et_3N .

The absorption spectrum of **Zn-PDI** is similar with **PDI** reported by K önig B. in 2014.

Duan, C.Y. et al. *J. Am. Chem. Soc.* **2016**, *138*, 39588

* 10 mol% catalyst was employed.

Duan, C.Y. et al. *J. Am. Chem. Soc.* **2016**, *138*, 39588

Proposed mechanism

The mechanism of the reaction is the same as that proposed by K önig B. in 2014.

Duan, C.Y. et al. *J. Am. Chem. Soc.* **2016**, *138*, 39588

dicyanoanthracene (DCA)

Pérez-Ruiz Raul Chem. Eur. J., 2018, 24, 105

The spectrum of **DCA**

A: Changes in the fluorescence spectra of **DCA** upon successive addition DIPEA in DMSO;

B: The absorption spectra of **DCA** (blue line) and **DCA[←]** absorption (green line).

Although absorption wavelengths are different, they both locate in the visible light range. The reduction potential of excited **DCA^{** $-$ **}** is −2.5 V, which is sufficient to reduce aryl bromides.

Rérez-Ruiz, R. et al. *Chem. Eur. J.* **2018**, 105

Control experiments

Rérez-Ruiz, R. et al. *Chem. Eur. J.* **2018**, 105

Proposed mechanism

Rérez-Ruiz, R. et al. *Chem. Eur. J.* **2018**, 105

dihydroxyanthraquinone (Aq-OH)

König Burkhard
Eur. J. Org. Chem., 2018, 34

The spectra of **Aq-OH**

A: Spectroelectrochemistry of Aq-OH in DMF; **B**: The absorption spectrum of **Aq-OH-H** ▬ (Formation of Aq -OH-H⁻ in the presence of $Na_2S_2O_4$); C: Changes to the absorption spectra of **Aq-OH** upon photoirradiation (λ_{Ex} = 455 \pm 15 nm) in the presence of Et₃N under nitrogen in DMF.

König, B. et al. *Eur. J. Org. Chem.* **2018**, 34

König B. et al. *Eur. J. Org. Chem.,* **2018**, 34

Proposed mechanism

König B. et al. *Eur. J. Org. Chem.,* **2018**, 34

The property of $\operatorname{\mathsf{Mes-}\!Acr-BF}_4$

There are two main excited states, assigned as lower energy doublet (D_1) and a higher energy twisted intramolecular charge transfer (**TICT**) state.

Nicewicz, D. A. et al. *Nature* **2020**, *580*, 76

TICT state of **Mes-Acr•**

If the electron is excited from SOMO to LUMO+1, the process is equivalent to an intramolecular charge transfer, where electron is transferred from acridine to *N*-Phenyl ring.

Transient absorption spectra of **Mes-Acr•**

Exited-state absorbance resonances with maxima at 550 and 650 nm are observed, which match the absorbance profile of aromatic radical anion. This indicates **Mes-Acr•**, in its excited state, acts as if it were a radical anion.

This experiment is indicative of the formation of radical anion localized on the *N*-phenyl ring during excitation.

Nicewicz, D. A. et al. *Nature* **2020**, *580*, 76

Proposed mechanism

Nicewicz, D. A. et al. *Nature* **2020**, *580*, 76

Benzo[ghi]perylene (BPI)

Miyake Garret M.
JACS, **2020**, *142*, 13573

PC•− can be photoexcited, where **the first six excited states** are predicted from TDDFT calculations. $Ar = 4$ -OMePh.

Miyake, G. M. et al. *J. Am. Chem. Soc.* **2020**, *142*, 13573

 $k_{\text{ET,1}}$ ionization of PC^{$-*$} by an electron transfer to the solvent;

 $k_{\text{ET,2}}$ electron transfer from the solvated electron to an aromatic substrate;

*^k*ET,3: back electron transfer to the lowest excited state of **PC•− ***;

 k_{IC} the internal conversion process.

Miyake, G. M. et al. *J. Am. Chem. Soc.* **2020**, *142*, 13573

Miyake, G. M. et al. *J. Am. Chem. Soc.* **2020**, *142*, 13573

2. Consecutive visible light-induced electron transfer (ConPET)

Reductions driven by ConPET processes

Oxidations driven by ConPET processes

3. Conclusion

N-phenylphenothiazine (PTH)

ChemCatChem 2018, 10, 2955; ACIE, 2020, 59, 300; JACS, 2021, 143, 4125

Rombach, D.; Wagenknecht, H.-A. *ChemCatChem* **2018***, 10,* 2955

Rombach. D.; Wagenknecht, H.-A. *Angew. Chem. Int. Ed.* **2020**, *59*, 300

Proposed mechanism

F − can be captured by lewis acid, so the benzylic position can only be attacked by alcohols.

Rombach, D.; Wagenknecht, H.-A. *Angew. Chem. Int. Ed.* **2020**, *59*, 300

Targos, K.; Williams, O. P.; Wickens, Z. K. *J. Am. Chem. Soc*. **2021**, *143*, 4125

The role of lithium perchlorate is to quench the superoxide.

BET: back electron transfer.

Targos, K.; Williams, O. P.; Wickens, Z. K. *J. Am. Chem. Soc*. **2021**, *143*, 4125

Targos, K.; Williams, O. P.; Wickens, Z. K. *J. Am. Chem. Soc*. **2021**, *143*, 4125

2. Consecutive visible light-induced electron transfer (ConPET)

Reductions driven by ConPET processes

Oxidations driven by ConPET processes

3. Conclusion

Conclusion

Thanks for your attention