Asymmetric Intermolecular Carbene Insertion to Non-activated C(sp³) - H Bonds

Reporter: Sheng Jiang

Supervisor: Prof. Shengming Ma

Apr 12 2024

Contents

- 1 Introduction
- 2 Asymmetric intermolecular carbene insertion to nonactivated C(sp³)–H bonds
 - 2.1 Seminal works
 - 2.2 Acyclic systems
 - 2.3 Cyclic systems
- 3 Summary and outlook

Introduction

Strategies for C(sp³)-H functionalization

Site-selective C-H functionalization

✓ Controlled selectivity with an activating group (AG):

4

General mechanism and reactivity

Electrophilic metal carbene

Site-selectivity and stereoselectivity

The first example of intermolecular carbene insertion to non-activated C-H bonds (Scott, 1974)

Pioneer studies with moderate site-selectivity (Teyssié, 1984)

Asymmetric intramolecular C-H insertion (Doyle, 1994)

> Can we control the site- and stereoselectivity in an intermolecular reaction?

Scott, L. T.; Decicco, G. J., *J. Am. Chem. Soc.* **1974**, *96*, 322-323. Demonceau, A.; Noels, A. F.; Hubert, A. J.; Teyssie, P., *Bull. Soc. Chim. Belg.* **1984**, *93*, 945-948. Doyle, M. P.; Dyatkin, A. B.; Roos, G. H. P.; Canas, F.; Pierson, D. A.; Vanbasten, A.; Muller, P.; Polleux, P., *J. Am. Chem. Soc.* **1994**, *116*, 4507-4508.

Seminal works

Seminal works: the first example

The first example of asymmetric intermolecular carbene insertion to non-activated C-H bonds

Seminal works: the first example

The rate of reaction between secondary and tertiary sites

KIE experiment

Davies, H. M. L.; Hansen, T.; Churchill, M. R., J. Am. Chem. Soc. 2000, 122, 3063-3070.

Seminal works: mechanism

Reaction pathway

X = H or Ph

transition state 6: concerted and asynchronous

Seminal works: model

Newman-projection model

Seminal works: bulky catalysts

Insertion to primary C-H bonds

Reaction conditions: N₂C(Ph)CO₂Me (0.1 mmol); **1a**, **2a**, **3a**, **4a** (4 mL); **5a** (2 equiv.) in DCE (4 mL); catalyst (0.1 mol% for **3a**, **4a**, **5a**, 1.5 mol% for **1a** and **2a**). [a] Absolute configuration not determined. [b] Normalized for the relative number of hydrogen atoms.

(.... II

S = MeOH

1

-N. Me N

[Rh(D₄-por*)(Me)(MeOH)]

Seminal works: azavinyl carbenes

Reaction conditions: **1** (1 mmol), **2** (2.5 mL), CHCl₃ (2.5 mL) at room temperature. ^a Rh₂(S-PTAD)₄ (0.5 mol%), 40 °C. ^b 12% of C-4 insertion product was observed.

Chuprakov, S.; Malik, J. A.; Zibinsky, M.; Fokin, V. V., J. Am. Chem. Soc. 2011, 133, 10352-10355.

Acyclic Systems

Optimization of reaction conditions

	+ +	1 mol% catalyst		$+ \frac{ROOC(p-Br)C_{6}H_{4}}{+} + \frac{ROOC(p-Br)C_{6}H_{4}}{+}$				
	1 3 equ	iv.		2		3		
entry	catalyst	R	t / °C	yield / %	rr of 2 :3	ee of 2 / %		
1	Rh ₂ (<i>R</i> -DOSP) ₄	CH_3	39	83	85:15	-43	C ₁₂ H ₂₅	
2	Rh ₂ (S-PTAD) ₄	CH ₃	39	50	74:26	-34	Rh ₂ (<i>R</i> -DOSP) ₄	Rh ₂ (S-PTAD) ₄
3	Rh ₂ (S-TCPTTL) ₄	CH_3	39	86	86:14	77		
4	Rh ₂ (S-TCPTAD) ₄	CH ₃	39	89	87:13	79		
5	Rh ₂ (S-TCPTAD) ₄	CH ₂ CF ₃	39	92 (83)	90:10	77		
6	Rh ₂ (S-TCPTAD) ₄	CH_2CF_3	24	85 (77)	91:9	80		
7	Rh ₂ (S-TCPTAD) ₄	CH_2CF_3	0	85 (79)	93:7	82	Rh ₂ (S-TCPTTL) ₄	Rh ₂ (S-TCPTAD) ₄
8	Rh ₂ (S-TCPTAD) ₄	CH ₂ CF ₃	-40	80 (77)	96:4	86		

The percentage yields refer to the combined yield of products **2** and **3**. The isolated yield of **2** is given in parentheses.

Acyclic Systems: tertiary C-H bonds

Some of the C–H functionalization occurred at the most accessible secondary position (marked in blue) of the substrates.

Acyclic Systems: chiral pocket

Rh-Rh = 2.399 Å

side view

Isomer 1 0.0 kcal mol-1

Isomer 2 2.1 kcal mol-1

bottom view

two most stable isomers

Acyclic Systems: secondary C-H bonds

Acyclic Systems: secondary C-H bonds

Acyclic Systems: secondary C-H bonds

Structural information

computational structure

computational structure

X-ray crystal structure

5 Rh₂[R-3,5**-diPh**TPCP]₄ α, β, α, β form **D**₂ symmetry

5 Rh₂[R-3,5-diPhTPCP]₄ α, α, α, α form C_4 symmetry 5 kcal mol⁻¹ less stable than α, β, α, β form

Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L., Nature 2016, 533, 230-234.

Rh₂[R-3,5-diPhTPCP]₄

20

Acyclic Systems: secondary vs tertiary

Acyclic Systems: secondary vs benzylic

COOCH₂CCl₃ Ρh Ph__COOCH₂CCl₃ 1 mol% Rh₂L ROOC DCM, 40 °C 1 2 equiv. **2** Ar = $(p-Br)C_6H_4$ 3 $R = CH_2CX_3$ C12H major product (3 or 4) Rh₂(S-DOSP)₄ Rh_2L_4 Χ yield / % rr of 3:4 entry dr ee / % Rh₂(S-DOSP)₄ 68 77 1 CI 6:1 4:1 2 Rh₂(S-TCPTAD)₄ Br 75 11:1 16:1 90 -Ŕh $Rh_{2}[R-3,5-di(p-^{t}BuC_{6}H_{4})TPCP]_{4}$ CI 3 69 1:3 7:1 89 Rh₂[R-3,5-di(p-^tBuC₆H₄)TPCP]₄ Rh₂(S-2-CI-5-BrTPCP)₄ 4 Rh₂(S-2-CI-5-BrTPCP)₄ CI 87 1:20 30:1 89 X-ray structure Rh₂(S-2-CI-5-BrTPCP)₄ 5 F 86 1:24 28:1 91

Optimization: non-activated C-H bonds in the presence of electronically activated sites

Application: synthesis of macrocyclic core

Liu, W.; Ren, Z.; Bosse, A. T.; Liao, K.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L., J. Am. Chem. Soc. 2018, 140, 12247-12255.

-Ŕh Rh₂(S-TCPTAD)₄

Rh

Rh₂(S-2-CI-5-BrTPCP)₄ C₄ symmetry

Acyclic Systems: primary C-H bonds

Some of the C–H functionalization occurred at the tertiary or secondary position (marked in blue) of the substrates. Some of the C–H functionalization occurred at the primary position (marked in red) of the substrates.

Acyclic Systems: primary C-H bonds

Liao, K.; Yang, Y.-F.; Lie, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L., Nat. Chem. 2018, 10, 1048-1055.

Cyclic Systems

Cyclic Systems: desymmetrization of cyclohexanes

The structure of tert-butyl cyclohexane

Primary (unfavourable)
Tertiary (less favourable)
Axial (less favourable)
Equatorial (sterically unfavourable)
Equatorial (sterically favourable)

Screen of catalyst

	product ratio					
catalyst	2	3	4	5		
Rh ₂ (S-DOSP) ₄	60.8	9.7	24.1	5.3		
Rh ₂ (S-TCPTTL) ₄	49.6	9.3	40.6	nd		
Rh ₂ [<i>R</i> -3,5-di(<i>p</i> - ^t BuC ₆ H ₄)TPCP] ₄	29.4	8.4	62.2	nd		
Rh ₂ [<i>R</i> -tris(<i>p</i> - ^t BuC ₆ H ₄)TPCP] ₄	70.3	17.2	12.4	nd		
Rh ₂ (S-TPPTTL) ₄	91.3	8.7	nd	nd		

Cyclic Systems: cyclohexanes

Scopes

^a No ring diastereomers were observed. ^b Owing to symmetry, there are no side-chain diastereomers.

Cyclic Systems: cyclohexanes

Computational studies

RI P

lsomer **47b** *C*₄ symmetry

Substrate

C3 insertion side view

lsomer 46 ∆G = 0.0 kcal mol⁻¹

C3 insertion top view

lsomer 46S ∆G = 5.4 kcal mol⁻¹

> C5 insertion top view

Cyclic Systems: BCPs and cyclobutanes

29

Summary and Outlook

Summary: catalyst-controlled reactivity

Seminal works

- Well-established catalysts
- Preliminary investigation on site- and stereoselectivity ٠

Further studies on cyclic systems

· Application of catalyst family

Rh₂(S-DOSP)₄

Discrimination in different conformation •

31

Summary: overview of the catalyst

Sterically hindered / electronically favoured site

EDG = Aryl, heteroaryl, vinyl

Outlook

> Incorporation of other noncovalent interactions into the catalyst

THANKS FOR YOUR ATTENTION!