Palladium (I) chemistry

Supervisor : Prof. Shengming Ma Student : Wei-Feng Zheng 2019/05/24

Contents

Introduction about Pd (I) species
Synthesis of dinuclear Pd (I) complexes
Reactions involving dinuclear Pd (I) complexes
Summary

Nobel Prize in Chemistry 2010

The first preparation of dinuclear Pd (I)

First preparation: Meilakh, E. and coworkers, *Dorzady Akad. Nazth S.S.S.R.* **1942**, *36*, 171. Assigned the structure by IR spectra: Goggin, P. L. and coworkers, *J. Chem. Soc. Dalton Trans.* **1974**, *0*, 534. X-ray crystallographic: Goggin, P. L. and coworkers, *J. Chem. Soc. Dalton Trans.* **1981**, *0*, 1077.

4

Chaplin, A. B. and coworkers, *Angew. Chem. Int. Ed.* **2016**, *55*, 3754. Ozerov, O. V. and coworkers, *Chem* **2016**, *1*, 902.

The first preparation of different kinds dinuclear Pd (I)

The proportion of Pd (I) species

2. Synthesis of dinuclear Pd (I) complexes

The first example of $(\mu$ -allyl) $(\mu$ -X)Pd₂L₂

Reducing agent: Mg, Sodium amalgam, ⁿBuMgBr, LiAlH₄, LiAlH(O^tBu)₃, NaBH₄

Felkin, H. and coworkers, J. Organomet. Chem. 1977, 129, 429.

Zargarian, D. and coworkers, J. Am. Chem. Soc. 2006, 128, 6508.

Kurosawa, H. and coworkers, Organometallics, 1995, 14, 5450.

Werner, H. and coworkers, J. Organomet. Chem. 1979, 179, 421.

Hazari, N. and coworkers, Organometallics 2013, 32, 5114.

Kobayashi, K. and coworkers, J. Organomet. Chem. 1991, 410, C25.

Hazari, N. and coworkers, Organometallics, 2013, 32, 5114.

Hazari, N. and coworkers, Organometallics 2013, 32, 4223.

The first example of $(\mu$ -X)₂Pd₂L₂

Mingos, D. M. and coworkers, J. Chem. Soc. Dalton. Trans. 1996, 4313.

50% yield

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2012, 51, 7226.

97% yield

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2015, 54, 10322.

3. Reactions involving dinuclear Pd (I) complexes

(pinaco)B(allyl)

(pinaco)B(2-methylallyl)

Hazari, N. and coworkers, Chem. Commun. 2011, 47, 1069.

26

55

60

81

Nicholas, K. M. and coworkers, J. Am. Chem. Soc. 1997, 119, 5057.

Zhang, L. and coworkers, Organometallics 2010, 29, 5766.

2.2% convertion Janiak, C and coworkers, *Macromol. Rapid Commun.* **2002**, 23, 16.

Yamamoto, A. and coworkers, J. Am. Chem. Soc. 1981, 103, 5600.

Hazari, N. and coworkers, J. Am. Chem. Soc. 2014, 136, 7300.

I/Br halogen exchange

Schoenebeck, F. and coworkers, Chem. Sci. 2013, 4, 4434.

Br 0.4 equiv. [Pd] 10 equiv. ⁿBu₄NBr solvent, T ^oC, t h

entry	[Pd]	solvent	T (°C)	t (h)	yield (%)
1	Pd ₂ (dba) ₃ / P ^t Bu ₃	THF	25	19	1
2	Pd ₂ (dba) ₃ / P ^t Bu ₃	THF	25	48	5
3	Pd ₂ (dba) ₃ / P ^t Bu ₃	toluene	35	42	0
4	Pd ₂ (dba) ₃ / P ^t Bu ₃	toluene	35	42	8
5	Pd(P ^t Bu ₃) ₂	THF	25	19	3
6	Pd(P ^t Bu ₃) ₂	toluene	25	42	0
7	Pd(P ^t Bu ₃) ₂	toluene	35	42	7

y equiv.

entry	x equiv.	y equiv.	t (h)	yield (%)
1	1	4	1.5	57
2	2	4	1.5	64
3	1	0.5	0.5	28
4	1	1	0.5	25

Proposed mechanism

C-SeCF₃ coupling

(The first catalytic method to convert aryl iodides into the corresponding ArSeCF₃)

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2015, 54, 10322.

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2015, 54, 6809.

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2018, 57, 12425.

C-C coupling

Rapid & Fully Selective Functionalization ?

Library of diversely & densely functionalized arenes !

Site selectivity in Pd(0) reaction depends on:

- Pd catalyst / ligand
- Steric and electronic of substrate
- Additive, solvent

Challenges:

- Unpredictable
- Usually resulting complex
- No alkylation (β -H elimination)
- Air-sensitive
- Long reaction time and high temperature

Schoenebeck, F. and coworkers, Angew. Chem. Int. Ed. 2018, 57, 12573.

Polymerization reaction

Polymers in material applications

polymer	entry	catalyst loading (%)	time (min)	M _n (Kg/mol)	M _w (Kg/mol)	PDI	note
	1	0.5	0.5	24.3	52.3	2.15	open flask
	2	0.005	30	51.0	98.9	1.94	
~ ~ ~	3	0.005	20 h	53.1	123.1	2.32	Pd(CH ₃ CN) ₂ Cl ₂ P ^t Bu ₃
9	4	0.5	30	13.1	23.8	1.82	open flask
	5	0.005	30	15.4	25.8	1.66	
	6	0.5	1	44.3	80.1	1.80	
	7	0.5	2	23.1	43.2	1.86	
•~~~	8	0.5	0.5	9.3	18.0	1.94	open flask
~~~	9	0.5	1	5.9	7.2	1.20	

Schoenebeck, F. and coworkers, 10.1002/anie.201903765

4. Summary

Thanks for your attention !

