Strain-promoted Reactions of Cyclohexadiene & Cyclohexatriene

FUDAN UNIV 2023 REPORT Reporter: Yingchao Huang Supervisor: Prof. Ping Lu

2023.12.8

Introduction

Milestones in strained cyclic intermediate chemistry

1) R. Stoermer, B. Kahlert, Ber. Dtsch. Chem. Ges. 1902, 35, 1633–1640; 2) J. D. Roberts, J. Am. Chem. Soc. 1953, 75, 3290–3291; 3) G. Wittig, Angew. Chem. 1955, 67, 348; 4) F. Scardiglia, & J. D. Roberts, Tetrahedron 1957, 1, 343–344; 5) G. Wittig, & P. Fritze, Angew. Chem., Int. Ed. Engl. 1966, 5, 846; 6) W. C. Shakespeare, & R. P. Johnson, J. Am. Chem. Soc., 1990, 112, 8578–8579.

A convenient route to benzyne

Synthetic approaches to precursors

Small-Ring Cyclic Allenes and Butatrienes

Overview of the current study

Cyclohexadiene

1, 2-Cyclohexadiene

1966, Wittig:

validated the intermediacy of 1, 2-Cyclohexadiene

Well studied Trapping reactions

Selectivity in Diels - Alder Reactions

Factors influencing *endo* selectivity of the Diels - Alder reaction

Endo transition state is favored

- by
 stabilizing secondary orbital interactions
- increase pressure of reaction
- the use of Lewis acid catalysis

endo and exo transition structures

Selectivity in Diels - Alder Reactions

Examples of highly endo selective Diels - Alder reaction

endo and exo transition structures

80% yield 11:1 endo:exo

Why the CH_2 group invariably is *endo* in the favored transition state?

R⁴ = carboxybenzyl.

Endo Selectivity in Diels - Alder Reactions

The LUMO of cyclohexa-1,2-dien has a larger MO coefficient at C2 and DA reactions with electron-rich dienes are expected to occur with preferential bonding at C2 of cyclohexa-1,2-diene.

F. Liu, Neil K. Garg, K. N. Houk, Angew. Chem. Int. Ed. 2021, 60, 14989–14997.

a) Calculated energy barriers for *exo* and *endo* Diels - Alder

reaction of cyclohexa-1, 2-diene (25) and furan (24).

b) *Exo* and *endo* transition state geometries: orbital overlap of the HOMO of furan with the p orbital on C2 of allene is maximized in the endo

13

Endo Selectivity in Diels - Alder Reactions

Allene LUMO/Furan HOMO interactions in the *endo* and *exo* transition states

The stabilizing secondary orbital interaction in TS-2-endo involves orbital overlap of the HOMO at C3' of furan with the LUMO at C3 of cyclohexa-1, 2-diene.

Endo Selectivity in Diels - Alder Reactions

Allene HOMO/Furan LUMO interactions

b) Allene HOMO/Furan LUMO Interactions

in both normal and inverse electron-demand Diels - Alder reactions of furan and allene, orbital interactions are more stabilizing along the endo pathway F. Liu, Neil K. Garg, K. N. Houk, Angew. Chem. Int. Ed. 2021, 60, 14989-14997. HOMO and LUMO energies

Strongest interaction:

overlap between allene LUMO and furan $\ensuremath{\operatorname{HOMO}}$

Second strongest interaction: overlap between allene HOMO and furan LUMO

Recent studies of strained cyclic allenes in total synthesis

Recent studies of strained cyclic allenes in total synthesis

Recent studies of strained cyclic allenes in total synthesis

Neil K. Garg, Science, 2023, 379, 261-265.

Recent studies of strained cyclic allenes

Metal-catalyzed reactions of strained cyclic allenes

Properties of Cyclohexadiene

Neil K. Garg, Nature, 2020, 586, 242-247.

Metal-catalyzed reactions of strained cyclic allenes

Neil K. Garg, J. Am. Chem. Soc. 2023, 145, 10491-10496

Cyclohexatriene

Comparison of reaction coordinate diagrams

1,2,3-cyclohexatriene

1990, Johnson: validated the intermediacy of 1, 2, 3-cyclohexatriene

Only **four** experimental studies pertaining to 1,2,3-cyclohexatriene are available in the literature.

Trapping reactions of 1, 2, 3-cyclohexatriene

Trapping reactions of a disubstituted cyclic triene precursor

Neil K. Garg, Nature, 2023, 618, 748-754.

Structure and regioselective reactions of monosubstituted cyclic trienes

Strained 1, 2, 3-cyclohexatrienes in multistep synthesis

i, *N*-Ph maleimide (2.5 equiv.), benzene, 80 °C, 51% yield, 5:1 dr. ii, Oxacyclic allene precursor (1.5 equiv.), CsF (5 equiv.), MeCN, 23 °C, 69% yield, 2:1 dr at the stereocentre indicated by an asterisk. iii, Mesitylene nitrile oxide (1.5 equiv.), CH_2Cl_2 , 0 °C to 40 °C, 79% yield, 6:1 dr. iv, Sodium naphthalenide (3 equiv.), THF, 0 °C, 57% yield.

v, enamine (5 equiv.), CsF (10 equiv.), Bu_4NOTf (2 equiv.), THF, 60 °C, then HCl (1 M), 23 °C, 70% yield, >20:1 rr, 92% ee. vi, AllylMgBr (2 equiv.), THF, -78 °C, 58% yield, >20:1 dr. vii, Hexadecane, 220 °C, 60% yield.

Summary and outlook

Summary and outlook

Summary and outlook

• Stabilized cyclohexene derivatives

cyclohexadiene

• More metal catalytic systems: Pd, Ni, Cu etc.

cyclohexatriene

- Cyclohexatriene precursors with more abundant substituents
- cyclic reactions, nucleophilic addition reactions, and transition metal catalyzed reactions

 R_3

