Based on LmrR Scaffold: Artificial Metalloenzyme (ArM) Catalyzed Asymmetric Organic Reactions

Reporter : Jie Lin Advisor: Prof. Shengming Ma Date: 20200515

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
- > The Copper Enzyme Catalyzed reactions
- The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions
- 3. Summary and outlook

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
- > The Copper Enzyme Catalyzed reactions
- > The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions

3. Summary and outlook

Enzymes

The earliest ArM

Yamamura, K.; Kaise, E. T. J. Chem. Soc. Chem. Commun. **1976**, 830. Wilson, M. E.; Whitesides, G. M. J. Am. Chem. Soc. **1978**, 100, 306.

The ArM of Historical Contributions

The structure of ArM

Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Köhler, J. C.; Ward, T. R. *Chem. Rev.* **2018**, *118*, 142 Roelfes, G. *Acc. Chem. Res.* **2019**, *52*, 545

Reaction mode

Characteristic:

- Secondary coordination sphere could interact with metal catalysts, substrates, or intermediates
- Generated from protein scaffolds with inherent functionality
- Endow homogeneous catalysts with a genetic memory

Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Köhler, J. C.; Ward, T. R. *Chem. Rev.* **2018**, *118*, 142

The scaffold of ArM

LmrR

QacR

CgmR

Lactococcal Multidrug Resistance Regulator (LmrR)

Bersellini, M.; Roelfes, G. Org. Biomol. Chem. 2017, 15, 3069.

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
- The Copper Enzyme Catalyzed reactions
- > The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions

3. Summary and outlook

The Copper Enzyme Catalyzed D-A reactions

Bos, J.; Fusetti, F.; Driessen, A. J. M.; Roelfes, G. Angew. Chem. Int. Ed. 2012, 51, 7472.

Entry	Catalyst	Conversion (%)	Endo/exo	ee (endo, %)
1	LmrR_N19C_I_Cu ^{II}	24±3	92:8	53 ± 5
2	$LmrR_M89C_I_Cu^{II}$	94 ± 4	95:5	97±1
3	$LmrR_M89C_V15A_I_Cu^{II}$	89 ± 4	96:4	97±1
4	$LmrR_M89C_D100E_I_Cu^{II}$	38 ± 4	88:12	40 ± 2
5	LmrR_M89C_Cu ^{II}	30 ± 5	90:10	<5
6	$LmrR + Phenanthroline + Cu^{II}$	29 ± 8	90:10	28 ± 7
7	Phenanthroline $+ Cu^{II}$	20 ± 5	93:7	0

Mechanisms

a) Cartoon representation.

c) Manual docking of Cu(II) bound product **3** inside the LmrR pocket.

b) Space filled representation.

Protein scaffold is a source of chirality. The reaction is protein accelerated. The conversion and ee values depend on the ligand.

The newly created active site in the hydrophobic pocket.

The Copper Enzyme Catalyzed Hydration reactions

Drienovska, I.; Alonso-Cotchico, L.; Vidossich, P.; Lledos, A.; Marechal, J-D.; Roelfes, G. *Chem. Sci.* **2017**, *8*, 7228.

Mechanisms

F93 is involved in π - π stacking with the bipyridine complex.

BpyA-Cu(II)-1a

BpyA–Cu^{II}-complex stay at the dimer interface.

M89X_W96E

1.79

Water accessibility is not equivalent on the pro-chiral faces of the substrate and D100 was not to approach the double bond of the substrate closely enough.

The product of R configuration has a larger contact area with water.

Activation of the H₂O nucleophile by E15 preferentially takes place at the pro-R face.

This stabilizing interaction is hinders the approach of water to the pro-S face of the substrate.

The Copper Enzyme Catalyzed Friedel-Crafts Alkylation

Drienovska, I.; Rioz-Martinez, A.; Draksharapu, A.; Roelfes, G. Chem. Sci. 2015, 6, 770.

Spectra study

(a) Absorption spectra of LmrR_M89BpyAla after addition of different concentrations of $Cu(NO_3)_2$.

These UV/Vis absorption bands are attributed to the red shifted π - π * transition of the bipyridine moiety of the incorporated BpyAla upon binding of Cu(II).

b) Raman spectra of (I) Cu^{II}-BpyAla,
(II) LmrR_M89BpyAla_Cu^{II},
(III) LmrR_M89BpyAla.

The Raman spectra bands are typical of pyridyl based ligands complexed to metal ions.

The Copper Enzyme Catalyzed Friedel-Crafts Alkylation

Fluorescence decay lifetime experiments

These data indicate that Cu(II)-complex binds predominantly in proximity to W96/W96', which suggests it is bound at or near to the hydrophobic pore of LmrR.

Fluorescence titration experiments

 $LmrR_LM_W96A + Cu(II)-L1$ (Cu-Phen)

These data indicate that LmrR_LM_W96A and substrate are more matched, so the response is faster.

The Copper Enzyme Catalyzed Michael Addition

Zhou, Z.; Roelfes, G. Nat. Catal. 2020, 3, 289.

$LmrR_V15pAF + Cu(II)$ -phenanthroline

These data indicate that the pAF residue does not negatively affect the binding of Cu(II)-complex to the two tryptophan residues (W96/W96').

Entry	Product	LmrR_V15pAF+Cu(II)-phen		LmrR_V15pAF_M8L+Cu(II)-phen			
		Yield (%)	d.r.	ee(%)	Yield (%)	d.r.	ee(%)
1	11a	42 ± 3	-	85 ± 2	35 ± 2	-	85 ± 1
2	11b	65 ± 1	4:1	$98 \pm 0/86 \pm 1$	82 ± 1	6:1	$>99 \pm 0/93 \pm 1$
3	11c	32 ± 3	4:1	$98 \pm 0/82 \pm 1$	48 ± 2	5:1	$97 \pm 0/85 \pm 1$
4	11d	56 ± 6	2:1	$61 \pm 5/18 \pm 2$	52 ± 4	2:1	$72 \pm 3/12 \pm 2$
5	11e	72 ± 3	8:1	$99 \pm 0/85 \pm 1$	90 ± 2	9:1	$>99\pm0/85\pm1$
6	11f	53 ± 2	-	96 ± 1	55 ± 3	-	97 ± 0
7	11g	80 ± 2	7:1	$97 \pm 0/67 \pm 1$	88 ± 1	8:1	$98 \pm 0/80 \pm 1$
8	11h	46 ± 3	5:1	$98 \pm 0/72 \pm 2$	82 ± 2	6:1	$>99\pm0/81\pm1$

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
 > The Copper Enzyme Catalyzed reactions
 > The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions
- 3. Summary and outlook

The Iron Enzyme Catalyzed Cyclopropanation reaction

Spectra study

a) Electronic absorption spectra upon the addition of LmrR to 5 μm hemin.

Upon addition of the protein, the dimeric porphyrin structure is disrupted and the hemin is in a monomeric form. Heme: protein = 1:1. b) Fluorescence spectra upon the addition of hemin to 1 $\mu m \ Lmr R$ dimer.

The fluorescence titration data indicating that the affinity of the protein for hemin is quite high.

Mechanism

a, b) The LmrR-heme system.

c, d) The LmrR-heme-carbine.

e, f) The cyclopropanation transition state.

5

F93'

N.Fe: N

- a) The iron atom cannot be accessible to solvent.
- b) The iron site becomes accessible to bind the carbine.
- c) With W96' pointing towards the hydrophobic core, carbene will be accessible for the styrene co-substrate.
- d) Rotation of W96' to the outside of the pore causes the heme-carbene (6) to remain at the dimer interface.
- e) The dimer interface become broader to accommodate the catalytic complex.
- f) W96 is flipped towards the solvent and thus contributes to binding of the TS (7) structure into the dimer interface.

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
- > The Copper Enzyme Catalyzed reactions
- > The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions
- 3. Summary and outlook

Bersellini, M.; Roelfes, G. Dalton Trans. 2017, 46, 4325.

Spectra study

Upon addition of either metal ion, the appearance of a shoulder around 310 nm was observed, indicative of a change in the π - π * transition of the bipyridine upon metal coordination. The absorption bands between 490 and 530 nm are characteristic of Fe²⁺ bipyridine complexes. Metal ion: protein = 1:1.

Control experiments

Entry	1 st incubation	2 nd incubation	Yield (%)	TON	ee (%)
1	$[Cu(phen)(NO_3)_2]$	-	<1	<1	n.d.
2	FeSO ₄ ·7H ₂ O	[Cu(phen)(NO ₃) ₂]	57 ± 14	23±5	72 ± 14
3	[Cu(phen)(NO ₃) ₂]	FeSO ₄ ·7H ₂ O	33±5	14 ± 2	78 ± 2
4	$Zn(NO_3)_2 \cdot 6H_2O$	[Cu(phen)(NO ₃) ₂]	13 ± 2	6 ± 1	50 ± 1
5	$[Cu(phen)(NO_3)_2]$	$Zn(NO_3)_2 \cdot 6H_2O$	11 ± 3	5 ± 1	50±13

This result suggests that selective regulation of activity of the designed artificial metalloenzyme by Zn^{2+} is reversible.

1. Background

- 2. ArM Catalyzed Asymmetric Organic reactions
- > The Copper Enzyme Catalyzed reactions
- > The Iron Enzyme Catalyzed reactions
- The Bimetallic Enzyme Catalyzed reactions

3. Summary and outlook

Summary

Advantages:

- High reactivity
- Mild reaction conditions
- Green catalysis
- Higher atomic utilization

Reaction mode:

- Reduction Chemistry
- C-C Bond Formation
- Oxygen Insertion Chemistry
- Hydration

Disadvantages:

- High catalyst loading
- Unclear mechanism
- Long reaction time
- Narrow substrate scopes
- More additives

Outlook

- Improvements in the practicality of ArM catalysis could be realized using different immobilization procedures.
- Develop such transformations that can be accomplished using small molecule or enzyme catalysts.
- Added complexity of ArM formation relative to other systems might be offset by savings in other aspects of a process.
- ArM catalysis in vivo could ultimately be used to augment metabolic pathways with synthetic reactions to expand the scope of biosynthesis.
- ArM catalysis and other areas of protein engineering and organometallic chemistry.

Thanks for your attention!