

Methylation Based on C-H Activation

Research Center for Molecular Recognition and Synthesis

Reporter: Jie Wang

Supervisor: Prof. Shengming Ma

2020/12/18

CONTENTS

2. Methylation Based on C-H Activation

2.1 Developed from precious metals: Pd/Rh/Ru/Ir

2.2 Developed from cheap metals: Fe/Mn/Ni/Co

3. Summary and Outlook

Background

Methyl & "magic methyl effect"

Cernak, T. et al. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
 Fraga, C. A. M. et al. Chem. Rev. 2011, 111, 5215-5246.

Cernak, T. et al. Angew. Chem. Int. Ed. 2013, 52, 12256-12267.

a) Methylation via Nucleophilic Substitution

				Σ	2	-н —		Methylati	on		$\sum_{i=1}^{n}$	м	e				
1 1 H hydrogen	2		Kau									13	14	15	16	17	18 2 He heliur
3 Li lithium 6.94 3.938, 6.997]	4 Be beryllium 9.0122	Key: atomic number Symbol name convertional atomic weight standard atomic weight										5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen ^{14.007} [14.006, 14.008]	8 O oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 10 Ne neor 20.18
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	25₅		26 7	8	27 9	, 28	3 ₁₁	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 Cl chlorine 35.45 [35.446, 35.457]	18 Al argo 39.95 [39.792, 3
19 K potassium 39.098	20 Ca calcium 40.078(4)	21 Sc scandium 44,956	22 Ti titanium 47,867	vanadium	Chrcnium	mangan ese	26 F 6 iron	Cobalt	nic tel	copper	30 Zn zinc 65,38(2)	31 Ga gallium	32 Ge germanium 72.630(8)	33 As arsenic 74,922	34 Se selenium 78,971(8)	35 Br bromine 79.904 [79.901, 79.907]	36 Krypt 83,796
37 Rb rubidium 85.468	38 Sr strontium 87.62	39 Y yttrium 88,906	40 Zr zirconium	41 Nb niobium 92,906	42 Mo molybdenu n 95,95	43 44Tc technetium	44 RU ru henii	45 Rh rhodium	Pd4 palla ium	47 Ag silver	48 Cd cadmium	49 In indium	50 Sn tin 118.71	51 Sb antimony 121.76	52 Te tellurium	53 iodine 126.90	54 Xeno 131.4
55 Cs caesium	56 Ba barium	57-71 lanthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	Re Re	76 Ds osmiun		7 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 204.38	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatine	86 Ri rado
87 Fr francium	88 Ra radium	89-103 actinoids	178.49(2) 104 Rf	180.95 105 Db dubnium	183.84 106 Sg seaborgium	186.21 107 Bh	190.23(108 HS bassiu	77 109 Mt	195.08 110 DS darmstadtium	196.97 111 Rg	112 Cn	113 Nh nihonium	114 FI	208.98 115 MC moscovium	116 Lv	117 Ts	

Methylation

Based on C-H Activation

Precious Metals:

[□] Yu, J.-Q. et al. J. Am. Chem. Soc. 2006, 128, 78-79.

Extended explanation for benzoquinone:

M06-(IEF-PCM)/BS2 level of theory [BS2 = 6-311+G(d,p) and SDD]

Benzoquinone may coordinate with Pd to promote the reductive elimination step.

>> Yu, J.-Q 2006-a:

Condition: $Pd(OAc)_2$ (10 mol %), Me_4Sn (0.075 equiv. x 10), $Cu(OAc)_2$ (1 equiv.), benzoquinone (1 equiv.), MeCN, 100 °C, 40 h.

Yu, J.-Q. et al. J. Am. Chem. Soc. 2006, 128, 78-79.
 Thornton, P. et al. Inorg. Chim. Acta. 1986, 120, 173.

$$\begin{array}{c|ccccc}
 & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\$$

Me Me

>> Yu, J.-Q 2006-b:

Condition: $Pd(OAc)_2$ (10 mol%), benzoquinone (1 equiv.) $Cu(OAc)_2$ (1 equiv.), **methylboroxine** (2 equiv.), 100 °C, 24 h, CH_2Cl_2 , air.

Condition: Pd(OAc)₂ (10 mol%), benzoquinone (2 equiv.) Cu(OAc)₂ (2 equiv.), **methylboroxine** (2 equiv.), 100 °C, 24 h, HOAc, O₂.

>> Yu, J.-Q 2006-b:

□ Yu, J.-Q. et al. J. Am. Chem. Soc. 2007, 129, 3510-3511.
 □ Yu, J.-Q. et al. J. Am. Chem. Soc. 2014, 136, 13194-13197.
 □ Baran, P. S.; Yu, J.-Q. et al. Angew. Chem. Int. Ed. 2013, 52, 7317-7320.

18

>> Li, C.-J 2008:

□ Li, C.-J. et al. J. Am. Chem. Soc. 2008, 130, 2900-2901.

>> Li, C.-J 2008:

>> Zhou, Q. 2019:

>> Zhou, Q. 2019:

□ Peng, Y. et al. J. Org. Chem. 2018, 83, 13211-13216.

Cheap Metals:

>> Nakamura, E. 2015:

□ Nakamura, E. et al. J. Am. Chem. Soc. 2015, 137, 7660-7663.

>> Ackermann, L. 2015:

□ Ackermann, L. et al. *Chem. Eur. J.* **2015**, *21*, 8812-8815.

□ Nakamura, E. et al. J. Am. Chem. Soc. 2016, 138, 10132-10135.

□ Nakamura, E. et al. Org. Lett. 2017, 19, 5458-5461.

>> Nakamura, E. 2017:

>> Nakamura, E. 2017:

Proposed mechanism: Mn^I/Mn^{III}

Nakamura, E. et al. Org. Lett. 2017, 19, 5458-5461.
 Girolami, G. S. et al. J. Am. Chem. Soc. 1988, 110, 6245-6246.

Chatani, N. et al. Angew. Chem. Int. Ed. 2016, 55, 3162-3165.

>> Lu, H. 2016:

a) radical trapping experiment

b) intermolecular competition experiment

3.0

0%

(>95% D)

 $D_3 + D_{(H)}$

detected by GCMS

recovered 37% (82% D)

Lu, H.; Li, G. et al. Chem. Eur. J. 2016, 22, 12286-12289.

D₅

□ Lu, H.; Li, G. et al. *Chem. Eur. J.* **2016**, *22*, 12286-12289.

>> Xu, K. 2016:

>> Ackermann, L. 2020:

Summary

For **Precious** Metals: Pd/Rh/Ru/Ir

typical path:

Advantages:

- ✓ Relatively simple DG
- ✓ No additional ligands usually
- ✓ Always mild methyl reagent

Disadvantages:

- Expensive metal catalyst
- Always equivalent metal oxidant
- Always high reaction temperature
- Additional additive for activation (such as AgSbF₆ for Rh)

For Cheap Metals: Mn/Fe/Co/Ni

typical path:

Advantages:

- ✓ Cheap metal catalyst
- ✓ Always mild oxidant
- ✓ Relatively low reaction temperature
- ✓ Relatively high TON (such as Fe)

Disadvantages:

- Relatively complicated DG
- Always additional ligand
- High-reactivity methyl reagent

- ✓ Understanding of the **relationship** between DGs and metals
- ✓ Conversion of DGs from "introduction" to inherent functional group
- ✓ Development of methylation reagents with high-activity and high-selectivity including CD₃, CT₃, ¹¹CH₃, ¹⁴CH₃, etc.

□ White, M. C. et al. *Nature*, **2020**, *580*, 621–627.

40%; d.r. = 3:1

- ✓ Upgrade of C-H activation from C(sp²)-H to C(sp³)-H in late-stage modification
- ✓ Exploitation of chiral catalyst and chiral ligand

