



# Organoboron-Mediated Ring-Opening Polymerization (ROP)

Speaker: Xiaowen Li

Advisor: Zhang-Jie Shi

Date: 2024.04.26







Background



Part I

Mononuclear-Organoborane-Mediated Ring-Opening Polymerizations



**Multinuclear-Organoborane-Mediated Ring-Opening Polymerizations** 



**Summary and Outlook** 











#### • Representative polymerization catalysts



(a) The Beginner's Course: General Description of Transition Metal Catalysts and Catalytic Polymerization Reactions. In *Alkene Polymerization Reactions with Transition Metal Catalysts*; Kissin, Y. V., Eds; Elsevier B.V., 2007; pp 1-34; (b) Liu, X.; Cui, D. et al. *Organometallics* **2007**, *26*, 2747; (c) Bakewell, C.; Williams, C. K. et al. *Angew. Chem., Int. Ed.* **2014**, *53*, 9226; (d) Coates, G. W. et al. *Chem. Rev.* **2016**, *116*, 15167.



















#### **Borane-Catalyzed Organic Reactions**



(a) Willcox, D. R.; Thomas, S. P. et al. ACS Catal. 2021, 11, 3190; (b) Meng, S.-S.; Zhao, J.-L.; Chan, A. S. C. et al. ACS Catal. 2019, 9, 8397; (c) Xu, C.; Xu, J. Org. Biomol. Chem. 2020, 18, 127; (d) Pramanlk, M.; Melen, R. L. Synthesis 2023, 55, 3906.





• Earliest reports of organoborane-mediated polymerization





(a) Furukawa, J. et al. *J. Polym. Sci.* 1957, *26*, 234; (b) Furukawa, J.; Tsuruta, T. *J. Polym. Sci.* 1958, *28*, 227;
(c) Kolesnikov, G. S.; Klimentova, N. V. *Bull. Acad. Sci. USSP, Div. Chem. Sci.* 1958, *6*, 666;

• Mechanism of alkylborane-initiated radical polymerization









• Pioneer work of organoborane-catalyzed ROP of epoxide



• First LPP by *P/B* Lewis pairs



(a) Chakraborty, D.; Chen, E. Y.-X. et al. *Macromolecules* **2003**, 36, 5470; (b) Xu, T.; Chen, E. Y.-X. *J. Am. Chem. Soc.* **2014**, 136, 1774.







• First metal-free copolymerization of CO<sub>2</sub> with epoxides





(a) Gnanou, Y.; Feng, X. et al. J. Am. Chem. Soc. 2016, 138, 11117; (b) Pask, S. D.; Nuyken, O. Polymers 2013, 5, 361.







#### • Industrial production of polycarbonate





(a) Polycarbonate Synthesis. In *Encyclopedia of Polymeric Nanomaterials*; : Kobayashi, S., Müllen, K., Eds; Springer, Berlin, 2015; pp 1793-1796; https://doi.org/10.1007/978-3-642-29648-2\_419; (b) Arno, M. C.; Dove, A. P. et al. *Chem. Rev.* **2021**, *121*, 10865.





## PART I I Nononuclear-Organoboron-Mediated Ring-Opening Polymerizations



#### **R<sub>3</sub>B/R'<sub>3</sub>N-Catalyzed ROCOP of PO/CO<sub>2</sub>**



E



#### Performance: TEED > TEA

Double base site of TEED benefited the initiating efficiency

| Entry | LA  | LA/TEED/PO | Time | Conv. | PPC selec. (%) | productivity<br>(g/g) | $F_{CO_2}$ | <i>M</i> n (kDa) | Ð    |
|-------|-----|------------|------|-------|----------------|-----------------------|------------|------------------|------|
| 6     | TEB | 1:0.5:100  | 4 h  | 84    | 87             | 40                    | >99%       | 9.8              | 1.14 |
| 7     | TEB | 1:0.5:200  | 6 h  | 87    | 98             | 94                    | >99%       | 20.1             | 1.11 |
| 8     | TEB | 1:0.5:300  | 9 h  | 84    | 96             | 134                   | >99%       | 28.3             | 1.11 |
| 9     | TEB | 1:0.5:400  | 12 h | 85    | 93             | 175                   | >99%       | 35.1             | 1.14 |
| 10    | TEB | 1:0.5:500  | 15 h | 83    | 94             | 216                   | >99%       | 33               | 1.13 |

Et TEED



Wang, Y.; Zhang, J.-Y.; Zhang, X.-H. et al. *Macromolecules* 2021, 54, 2178.







## **TEB/Phosphazene-Catalyzed Polycarbonate Synthesis**



- - - - -

| i & Liu, 20<br><i>(anionic)</i> | 22<br>CO <sub>2</sub> | +                    | C <sub>3</sub> N <sub>3</sub><br>BDI<br>bulk p | -Py-P <sub>3</sub> /I<br>M (initial | Et <sub>3</sub> B        | Hto          |       |                        |                     | ~of        | o o h           | +                             | но он<br>врм                                                                                                 |
|---------------------------------|-----------------------|----------------------|------------------------------------------------|-------------------------------------|--------------------------|--------------|-------|------------------------|---------------------|------------|-----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                 |                       |                      |                                                |                                     |                          |              |       | Poly(cyclo             | PCHC<br>ohexene d   | carbonate) |                 | CHC<br>Cyclohexene carbonate) |                                                                                                              |
|                                 | Entry                 | CHO/base<br>/BDM/TEB | T (°C)                                         | t (h)                               | CO <sub>2</sub><br>(MPa) | Conv.<br>(%) | TON   | TOF (h <sup>-1</sup> ) | <i>M</i> n<br>(kDa) | Ð          | PCHC/CHC<br>(%) | Ether<br>(%)                  |                                                                                                              |
|                                 | 1                     | 500:1:1:2            | 80                                             | 2                                   | 1                        | 60           | 300   | 150                    | 15.4                | 1.26       |                 |                               |                                                                                                              |
|                                 | 2                     | 2000:1:1:2           | 80                                             | 3                                   | 1                        | 52           | 1040  | 347                    | 22.5                | 1.26       |                 |                               |                                                                                                              |
|                                 | 3                     | 4000:1:1:2           | 80                                             | 3                                   | 1                        | 39           | 1560  | 520                    | 21.9                | 1.23       |                 |                               |                                                                                                              |
|                                 | 4                     | 8000:1:1:2           | 80                                             | 12                                  | 1                        | 76           | 6080  | 507                    | 117.8               | 1.23       | <b>~ 99</b>     | 0                             | <b>C<sub>3</sub>N<sub>3</sub>-Py-P<sub>3</sub></b><br>(p <i>K</i> <sub>a</sub> = 26.5 in CH <sub>3</sub> CN) |
|                                 | 5                     | 16000:1:1:2          | 80                                             | 12                                  | 1                        | 42           | 6720  | 560                    | 121.0               | 1.25       | 2 00            | 0                             |                                                                                                              |
|                                 | 6                     | 24000:1:1:2          | 80                                             | 30                                  | 1                        | 51           | 12240 | 408                    | 275.5               | 1.59       |                 |                               |                                                                                                              |
|                                 | 7                     | 500:1:2:2            | 25                                             | 5                                   | 0.1                      | 36           | 180   | 36                     | 5.5                 | 1.09       |                 |                               |                                                                                                              |
|                                 | 8                     | 500:1:2:6            | 25                                             | 2                                   | 0.1                      | 38           | 190   | 95                     | 5.4                 | 1.10       |                 |                               |                                                                                                              |

1.High catalytic efficiency: TON up to 12240;

2. Perfect polycarbonate selectivity: no ether linkage, no cyclic carbonate;

3.**High molecular weight**:  $M_{\rm n}$  (up to 275.5 kg/mol);

4. Ambient conditions polymerization: 25 °C, 1 atm, TOF up to 95 h<sup>-1</sup>.

## **TEB/Phosphazene-Catalyzed Polycarbonate Synthesis**







| Wu, 2020<br><i>(anionic)</i> | C<br>(15 | O <sub>2</sub> + |       | <u>N</u> ⊕,<br>> 99% | ( <sup>⊖</sup> <sub>(cat.)</sub><br>►<br>Ether linkage | <b>PCH</b><br>= 0% (in | CHC                    | Cat.             |                  | $ \begin{array}{c} \begin{array}{c} \bullet \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ |                               |
|------------------------------|----------|------------------|-------|----------------------|--------------------------------------------------------|------------------------|------------------------|------------------|------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| Entry                        | cat.     | mon./cat.        | t (h) | T (°C)               | Conv. (%)                                              | TON                    | TOF (h <sup>-1</sup> ) | Efficiency (g/g) | <i>M</i> n (kDa) | Ð                                                                                            | _                             |
| 1                            | 1        | 5000             | 3     | 80                   | 7                                                      | 350                    | 117                    | 150              | 15.6             | 1.11                                                                                         | _                             |
| 2                            | 2        | 5000             | 3     | 80                   | 26                                                     | 1300                   | 433                    | 520              | 19.2             | 1.14                                                                                         |                               |
| 3                            | 3a       | 5000             | 3     | 80                   | 22                                                     | 1100                   | 367                    | 480              | 27.2             | 1.16                                                                                         |                               |
| 4                            | 3b       | 5000             | 3     | 80                   | 31                                                     | 1550                   | 517                    | 590              | 29.8             | 1.14                                                                                         | Bromide anion is the best     |
| 5                            | 3c       | 5000             | 3     | 80                   | 19                                                     | 950                    | 317                    | 320              | 22.7             | 1.23                                                                                         |                               |
| 6                            | 4        | 5000             | 3     | 80                   | 25                                                     | 1250                   | 417                    | 460              | 26.6             | 1.13                                                                                         |                               |
| 7                            | 5        | 5000             | 3     | 80                   | 26                                                     | 1300                   | 433                    | 460              | 23.4             | 1.13                                                                                         |                               |
| 8                            | 6        | 5000             | 3     | 80                   | 30                                                     | 1500                   | 500                    | 510              | 22.3             | 1.11                                                                                         |                               |
| 9                            | 7        | 5000             | 3     | 80                   | 29                                                     | 1450                   | 483                    | 450              | 21.2             | 1.12                                                                                         |                               |
| 10                           | 3b       | 5000             | 12    | 25                   | 2                                                      | 100                    | 8                      | 40               | 7.8              | 1.13                                                                                         | Tomporature from 25 to 150 °C |
| 11                           | 3b       | 5000             | 3     | 100                  | 58                                                     | 2900                   | 967                    | 1110             | 30.3             | 1.20                                                                                         | (up to 4000 b-1 TOE)          |
| 12                           | 3b       | 5000             | 0.5   | 150                  | 49                                                     | 2450                   | 4900                   | 940              | 18.7             | 1.25                                                                                         | (up to 4900 n + TOF)          |
| 13                           | 3b       | 10000            | 26    | 80                   | 74                                                     | 7400                   | 285                    | 230              | 27.1             | 1.15                                                                                         | Extremely high efficiency     |
| 14                           | 3b       | 20000            | 48    | 80                   | 65                                                     | 13000                  | 271                    | 4960             | 24               | 1.18                                                                                         | (up to 4.96 kg/g)             |





Intramolecular synergistic effect between *B* and *N*<sup>+</sup>



• Proposed mechanism





#### **Other DLMCS-Catalyzed ROCOPs**





• Ring-opening polymerization of  $\beta$ -Butyrolactone



(b) Yang, L.; Wu, G.-P. et al. *Macromolecules* **2021**, *54*, 5509.





# PART III Nultinuclear-Organoboron-Mediated Ring-Opening Polymerizations



| Wı<br>(a | ı, 2020<br>nionic) |      | F    | <b>PO</b> (R = Me) or I | B<br>bu<br>EO (R = H) | The polyme | erization | <b>D</b> (R = Me) or | • <b>PEO</b> (R = H)        | $x^{\bigcirc}$ $B$ $Me^{n}Bu$ $1a: X = Cl; 1b: X = Br; 1c: X = I$ |                                                       |  |  |  |
|----------|--------------------|------|------|-------------------------|-----------------------|------------|-----------|----------------------|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
|          | Entry              | Mon. | Cat. | Mon./Cat.               | T (°C)                | t (h)      | Conv. (%) | TON                  | <i>M</i> <sub>n</sub> (kDa) | Đ                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |
|          | 1                  | PO   | 1a   | 500/1                   | -20                   | 0.5        | 99.9      | 500                  | 34.6                        | 1.07                                                              | Ê 100 R <sup>2</sup> =0.999 1.3                       |  |  |  |
|          | 2                  | PO   | 1a   | 1000/1                  | -20                   | 2          | 99.9      | 1000                 | 62.5                        | 1.11                                                              | 2 75                                                  |  |  |  |
|          | 3                  | PO   | 1a   | 2000/1                  | -20                   | 4          | 99.9      | 2000                 | 106.3                       | 1.12                                                              | ≥ 50 ° ° 1.1                                          |  |  |  |
|          | 4                  | PO   | 1a   | 3000/1                  | -20                   | 6          | 99.9      | 3000                 | 156.2                       | 1.17                                                              | 25 0                                                  |  |  |  |
|          | 5                  | PO   | 1a   | 10000/1                 | -20                   | 6          | 35.0      | 3500                 | 177.3                       | 1.17                                                              | 0 1000 2000 3000<br>PO/12                             |  |  |  |
|          | 6                  | PO   | 1b   | 10000/1                 | -20                   | 6          | 35.1      | 3510                 | 181.2                       | 1.16                                                              | Controlled polymerization process                     |  |  |  |
|          | 7                  | PO   | 1c   | 10000/1                 | -20                   | 6          | 34.6      | 3460                 | 172.7                       | 1.19                                                              |                                                       |  |  |  |
|          | 8                  | PO   | 1b   | 30000/1                 | -20                   | 60         | 99.9      | 30000                | 1050.1                      | 1.23                                                              | High $M_{\rm n}$ : up to 1×10 <sup>3</sup> kDa        |  |  |  |
|          | 9                  | PO   | 1b   | 100000/1                | -20                   | 144        | 56.5      | 56500                | 219.5                       | 1.10                                                              | Low cat. loading, high TON                            |  |  |  |
|          | 10                 | EO   | 1b   | 10000/1                 | 0                     | 0.33       | 99.9      | 10000                | 120.1                       | 1.25                                                              | _                                                     |  |  |  |
|          | 11                 | EO   | 1b   | 200000/1                | 0                     | 12         | 99.9      | 200000               | 343.6                       | 1.33                                                              |                                                       |  |  |  |









• Proposed intramolecular N<sup>+</sup> assisted SN<sub>2</sub> mechanism





| Li & Zl<br>(a | hong, 20<br>nionic) | 22   |           | /      | <u></u><br>РО | B P<br>bulk polyme | $\begin{array}{c} & X \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |                      |      |                                                                                                                                                                                                                                                                       |
|---------------|---------------------|------|-----------|--------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -             | Entry               | Cat. | Mon./Cat. | T (°C) | t (min)       | Conv. (%)          | TOF (h <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M <sub>n</sub> (kDa) | Ð    | -<br>250 - 1.0 0.0 - 500 equiv.<br>1000 equiv.                                                                                                                                                                                                                        |
| _             | 1                   | 1    | 500/1     | -30    | 10            | > 99               | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.0                 | 1.03 | $\begin{array}{c} - \\ 200 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                           |
|               | 2                   | 2    | 500/1     | -30    | 10            | >99                | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.4                 | 1.04 |                                                                                                                                                                                                                                                                       |
|               | 3                   | 1    | 500/1     | 0      | 30            | >99                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.0                 | 1.15 | $   \underbrace{\mathcal{D}}_{S} = 100^{-1} = 16 \ \text{B} \ 20 \ 22 \ 24 \ 26 \ 28 \\ \text{Elution time (min)} = R^2 = 0.978 \qquad \qquad$ |
| Γ             | 4                   | 1    | 500/1     | -20    | 10            | >99                | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.4                 | 1.05 |                                                                                                                                                                                                                                                                       |
|               | 5                   | 1    | 1000/1    | -20    | 30            | 97                 | 1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.7                 | 1.03 |                                                                                                                                                                                                                                                                       |
|               | 6                   | 1    | 2000/1    | -20    | 60            | >99                | 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127.0                | 1.02 | 500 1000 1500 2000 2500 3000<br>PO/initiator                                                                                                                                                                                                                          |
|               | 7                   | 1    | 3000/1    | -20    | 60            | >99                | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 235.4                | 1.03 | Controlled polymerization process                                                                                                                                                                                                                                     |
|               | 8                   | 1    | 10000/1   | -10    | 360           | 97                 | 1616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449.4                | 1.24 | At contored actalization                                                                                                                                                                                                                                              |
|               | 9                   | 1    | 10000/1   | -20    | 360           | 97                 | 1616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 489.5                | 1.20 | $N^{-}$ centered catalyst:                                                                                                                                                                                                                                            |
|               | 10                  | 1    | 10000/1   | 0      | 360           | 69                 | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 341.7                | 1.24 | M = 181.2  kDa                                                                                                                                                                                                                                                        |
|               | 11                  | 1    | 10000/1   | 25     | 360           | 30                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132.6                | 1.25 | $P^+$ -counterpart has                                                                                                                                                                                                                                                |
|               | 12                  | 1    | 30000/1   | -10    | 720           | 36                 | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 368.0                | 1.34 | higher conversion and $M_n!$                                                                                                                                                                                                                                          |

#### Wang, X.; Li, Z. et al. ACS Catal. 2022, 12, 8434.





#### • Comparison of *N*<sup>+</sup>-centered and *P*<sup>+</sup>-centered catalysts



Activation energy: 18.6 (*N*) vs 17.3 (*P*) kcal/mol Initiation energy: 12.5 (*N*) vs 9.9 (*P*) kcal/mol

Radius of *P* was lager than that of *N* **Lager** space for coordination and ROP



#### N<sup>+</sup>-centered VS P<sup>+</sup>-centered DLMCS catalysts







#### N<sup>+</sup>-centered VS P<sup>+</sup>-centered DLMCS catalysts







Stronger Coulombic interaction in P<sup>+</sup> than in N<sup>+</sup>

#### • PA conversion versus time plots



#### For P1: shorter initiation time higher propagation rate





#### N<sup>+</sup>-centered VS P<sup>+</sup>-centered DLMCS catalysts

















R<sup>1</sup>-B

R<sup>3</sup>















> Organoboron catalysts are still less competent than metallic catalysts.



> Alkylboranes are less Lewis acidic, they can only catalyze ROP of small rings.



> Develop chiral organoboranes for asymmetric synthesis of stereoregular polymer.





# Thank you for listening





# Supporting

# Information





• Preparation of DLMCS catalysts



(c) Wang, X.; Li, Z. et al. ACS Catal. 2022, 12, 8434; (d) Zhang, Y.-Y.; Wu, G.-P. et al. Macromolecules 2022, 55, 6443.



• Free energy profiles of [BBN-C<sub>5</sub>-NEt<sub>3</sub>][Br]-catalyzed CHO/CO<sub>2</sub> copolymerization







Yang, G.-W.; Wu, G.-P. et al. Angew. Chem., Int. Ed. 2020, 59, 16910.