

Literature Report

Gold-Catalyzed C-C Coupling Reactions

Reportor: Xin-Cheng Lin

Supervisor: Prof. Zhang-Jie Shi

2021-04-09

- Gold-Catalyzed C-C Coupling Reactions
 - Oxidants-Assisted Coupling Reactions
 - Photo-Assisted Coupling Reactions
 - Dinuclear Gold-Catalyzed Coupling Reactions

Summary

Background

- Gold-Catalyzed C-C Coupling Reactions
 - Oxidants-Assisted Coupling Reactions
 - Photo-Assisted Coupling Reactions
 - Dinuclear Gold-Catalyzed Coupling Reactions

Summary

• The source of gold

• The role of gold in the life

• The role of gold in the chemistry

Relativistic Effects

		0.128 Cu	745 L		a	Ь
		1356 0.1445 A o	337 731		с М	d
		1234	285			
0.1385 P t	866 t	0.1442 Au	890 L	0.151 H	1007 g	
2042	469	1337	343	234	59	

 $m = m_0 / [1 - (v/c)^2]^{1/2}$

Au 1s electron as an example

$$\frac{\langle v \rangle}{c} \approx \frac{79}{137} = 0.58 \qquad m = 1.23 m_0$$

$$r_{\rm n} = \alpha_0 \frac{{\rm n}^2}{{\rm m}_0} \longrightarrow \frac{r_{\rm 1s(R)}}{r_{\rm 1s(NR)}} = 0.81$$

- Contraction and stabilization of 6s and 6p orbitals
- Expansion and instability of 5d and 4f orbitals

Nano Au as Catalysts

Masatake Haruta

Graham J. Hutchings

Haruta, M. et al. *J. Catal.* **1989**, *115*, 301. Hutchings, G. J. et al. *J. Catal.* **1985**, *96*, 292.

Au^I-Catalyzed intramolecular hydroamination

The Nobel Prize in chemistry 2010 for Pd-catalyzed cross couplings

Richard F. Heck

Ei-ichi Negishi

Akira Suzuki

Au^I and I³⁺-mediated coupling reactions of arenes

 R^1 = H, Me, OMe, CI; R^2 = H, Me, ^tBu, F, CI, Br, I, NO₂, COOMe

Tse, M. K. et al. Chem. Commun. 2008, 386.

.....

Au^I and I³⁺-mediated coupling reactions of arenes and alkynes

entry	substrate	yield %
1	$Z = CO_2Et$	75
2	$Z = CO_2^{t}Bu$	60
3	Z = COPh	72
4	Z = CO(3,5-dimethoxy-phenyl)	68
5	$Z = CO(\rho - CF_3C_6H_4)$	70
6	$Z = CO^{t}Bu$	31
7	$Z = CO(C_7H_{12})$	66
8	$Z = (CH_3)C=CH_2$	48
9	Z = Ph	25

Au^I and I³⁺-mediated coupling reactions of arenes and alkynes

Au^I and I³⁺-mediated arylation of ArSiMe₃

Mild reaction conditions; High FG tolerance; High selectivity; High yield

Lloyd-Jones, G. C. et al. Science 2012, 337, 1644.

.....

Lloyd-Jones, G. C. et al. J. Am. Chem. Soc. 2014, 136, 254.

Au^I and I³⁺-mediated arylation of ArBpin or ArGeEt₃

Au^I- and selectfluor-mediated coupling reactions of propargylic esters

Zhang, L. et al. Bioorg. Med. Chem. Lett. 2009, 19, 3884.

Proposed mechanism

DFT calculations in the presence of aryl boronic acids

DFT calculations in the absence of aryl boronic acids

Faza, O. N.; Lopez, C. S. et al. J. Org. Chem. 2013, 78, 4929.

Au^I- and selectfluor-mediated coupling reactions of terminal alkenes

Lloyd-Jones, G. C.; Russel, C. A. et al. Org. Lett. 2010, 12, 4724.

Background

- Gold-Catalyzed C-C Coupling Reactions
 - Oxidants-Assisted Coupling Reactions

Photo-Assisted Coupling Reactions

Dinuclear Gold-Catalyzed Coupling Reactions

Summary

Dual gold/photoredox mediated C(sp²)–C(sp²) coupling reactions

Proposed mechanism

- > Water is involved in aiding the transmetallation step $(Ar^1B(OH)_2 \rightarrow I)$
- Water affects the homogeneity of the reaction mixture, and therefore the ability of light to efficiently penetrate the mixture to promote photoredox coupling

Proposed mechanism

Background

Gold-Catalyzed C-C Coupling Reactions

Oxidants-Assisted Coupling Reactions

Photo-Assisted Coupling Reactions

Dinuclear Gold-Catalyzed Coupling Reactions

Summary

Dinuclear gold-catalyzed coupling reactions of terminal alkenes

Proposed mechanism

Dinuclear gold-complexes

Summary of Electrochemistry Data

Complex	E _{ox} for Au(I) (V)	E _{red} for Au(III) (V)		
9	1.48	/		
10	/	-0.69		
11	1.48	-0.53		
12	1.34	1		
13	1.96	/		
14	1.64	/		

b) Homocoupling by dinuclear gold without aurophilic interaction

Dinuclear gold-catalyzed coupling of Ar–B(OH)₂ and allyl bromides

Dinuclear gold-catalyzed coupling of Ar–B(OH)₂ and allyl bromides

Dinuclear gold-catalyzed coupling of aliphatic and aromatic alkynes

Dinuclear gold-catalyzed coupling of aliphatic and aromatic alkynes

Control experiments with Ph₃PAuCl

Xie, J. et al. Chem 2019, 5, 2718.

Background

- Gold-Catalyzed C-C Coupling Reactions
 - Oxidants-Assisted Coupling Reactions
 - Photo-Assisted Coupling Reactions
 - Dinuclear Gold-Catalyzed Coupling Reactions

Summary

- Direct functionalization
- High regioselectivity
- ➢ High FG tolerance

Aryl radicals (diazonium salts)

- Dual role of oxidizing agent and substrate
- \rightarrow +I \rightarrow +II \rightarrow +III (Gold)

Dinuclear gold catalysis

Aurophilic interaction between the two gold atoms can reduce its redox potential

 $+I \rightarrow +II (Gold)$

Thanks!