Organic Super Electron Donors

Reporter: Mengmeng Xu Supervisor: Prof. Quan Cai

Contents

> Discovery

Two Types of Super-electron Donors (SEDs)

The electron-rich olefins

SEDs derived from diborons

Summary

Electron-Donor

Lafferty, R. H., Jr. et al. J. Am. Chem. Soc. **1950**, 72, 3646 ₃ Drakesmith, F. G. et al. J. Chem. Soc., Perkin Trans. 1 **1994**,3115.

Electron-Donor

Radical-Polar Crossover Reactions

J. A. Murphy, et al. J. Chem. Soc. Chem. Commun., 1993, 295.

Aromatic driving force

Yamashita Y.; Kobayashi. Y.; Miyashi T. Angew. Chem., Int. Ed. 1989, 28, 1052

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2005, 44, 1356

The method to prepare 7

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2005, 44, 1356

The application of 7

7 is the first neutral organic molecule to form aryl radicals from iodoarenes !

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2005, 44, 1356

Hypothesis

Aryl radical

We need a more-reactive Organic Electron Donor !

J. A. Murphy; T. Tuttle; et al. Angew. Chem., Int. Ed. 2007, 46, 5178

The electron donor 13

J. A. Murphy, T. Tuttle, et al. Angew. Chem., Int. Ed. 2007, 46, 5178

Concept

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2005, 44, 1356

J. A. Murphy, T. Tuttle, et al. Angew. Chem., Int. Ed. 2007, 46, 5178

Advantages

Under very mild conditions because of their neutrality

In the absence of metal ions With wider applicability than in the case of photochemically assisted reactions

J. A. Murphy; T. Tuttle, et al. J. Am. Chem. Soc. 2007, 129, 13368

A new Super-electron-donor derived from DMAP

18 is a more-reactive Super-electron donor

J. A. Murphy. et al. Synlett, 2008, 14, 2132

Reductive Cleavage of N–O Bonds in Weinreb Amides

Neighbouring-group electron-transfer effect

J. A. Murphy. et al. Synlett, 2008, 14, 2132

Reductive Cleavage of N–O Bonds in Weinreb Amides

15

J. A. Murphy. et al. Synlett, 2008, 14, 2132

Polymerization Initiated by SED

Vanelle P. et. al. Angew. Chem., Int. Ed. 2016, 55, 5994 ¹⁶

SEDs catalyze radical chain reactions

Plausible mechanism

J. A. Murphy; T. Tuttle, et al. Angew. Chem., Int. Ed. 2019, 131, 1157617

Activating Benzenes by photoactivated SEDs

Absorption maxima at 260, 345, and 520 nm

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2012, 51, 3673

Reductive Cleavage of Benzylic Esters and Ethers

J. A. Murphy, et al. Angew. Chem., Int. Ed. 2013, 52, 2239 ²⁰

Reduction of Arenes by photoactivated SEDs

J. A. Murphy, et al. J. Am. Chem. Soc. 2013, 135, 10934

Reductive Cleavage of C-N and S-N

Proposed mechanism

J. A. Murphy. et al, Angew. Chem., Int. Ed. 2014, 53, 474 ²²

Background

Base-promoted homolytic aromatic substitution (BHAS) reactions

A. Studer; D. P. Curran, Angew. Chem., Int. Ed. 2011, 50, 5018

Initiation with phenanthrolines as additives

Proposed mechanism

John A. Murphy, et al. Chem. Sci., 2014, 5, 4756

Initiation with phenanthrolines as additives

John A. Murphy, et al. Chem. Sci. 2014, 5, 476

Background

Li, S. H. et al. Angew. Chem., Int. Ed. 2016, 55, 5985

Jiao's idea: Radical Borylation of Aryl Halides

Zhang L.; Jiao L. J. Am. Chem. Soc. 2017, 139, 607

The structure of the electron donor

Zhang L.; Jiao L. Chem. Sci. 2018, 9, 2711

Driving force

Two questions

? The mode of boron-boron bond cleavage

? Mechanism for the formation of super-electron-donors

Gibbs free energy profile for the homolytic and heterolytic cleavage pathways of diboron.

Zhang L.; Jiao L. Chem. Sci. 2018, 9, 2711

34

Revised radical borylation mechanism

Reductive Cleavage of S-N, N-O and C-O

SEDs mixture as the radical initiator

Desulfonative borylation of benzyl sulfones

C. M. Crudden. et al. Org. Biomol. Chem. 2019, 17, 7300

C. M. Crudden. et al. Org. Biomol. Chem. 2019, 17, 7300

⁴⁰

Visible-Light-Induced Borylation of Aryl Chlorides

Visible-Light-Induced Borylation of Aryl Chlorides

Complex 27 exhibits a superior reactivity!

Optimization of Reaction Conditions

MeO CI +
$$B_2pin_2$$

MeONa, $CH_3CN_400 \text{ nm LED, rt, Ar, 12 h}$ MeO OR

entry	change from standard conditions	conv. (%)	yield (%)
1	none	99	92
2	365 nm LED intead of 400 nm LED	40	35
3	450 nm LED intead of 400 nm LED	66	53
4	254 nm Hg lamp (28 W) intead of 400 nm LED	6	5
5	without light	1	1
6	without 4-phenylpyridine	1	1
7	reaction set up under air	94	88

Borylation of Aryl Chlorides

Enabling Difficult Borylation Reactions

Application in sequencial diborylation

Borylation of Fluorobenzene

Proposed mechanism

Summary

The electron-rich olefins

2005-2019

- Reactions in the ground state
- Reactions in the photo-excited state
- Haloarene–Arene Coupling

SEDs derived from diborons

2018-2019

- Radical Borylation of Aryl Halides
- Desulfonative borylation of benzyl sulfones
- Visible-Light-Induced Borylation of Aryl Chlorides

Summary

Hypothesis

Photo-Induced Borylation of Aryl Chlorides

Thanks for your attention