Literature Report

Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization

Reporter: Si-Jun Xie Supervisor: Prof. Zhang-Jie Shi

> Fudan University 2021-04-09

> > 1

- I. Background
- II. Ziegler-Natta Catalyst
- **III. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization**

Unique Properties of Rare-earth Elements

Cp-ligated Rare-earth Complexes

Synthesis of Half-sandwich Rare-earth Complexes

Polymerization and Copolymerization

IV. Summary

I. Background

- II. Ziegler-Natta Catalyst
- **III. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization**

Unique Properties of Rare-earth Elements

Cp-ligated Rare-earth Complexes

Synthesis of Half-sandwich Rare-earth Complexes

Polymerization and Copolymerization

IV. Summary

Background

Different Types of Polymers

Ziegler-Natta catalysts have provided a worldwide profitable industry with production of more than 160 billion pounds and creation of numerous positions. Polyethylene and polypropylene is reported to be the top two widely used synthetic plastic in the world. Brookhart, M., et al. *Chem. Rev.* **2000**, *100*, 1169.

Polyethylene

Contents

I. Background

II. Ziegler-Natta Catalyst

III. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization

Unique Properties of Rare-earth Elements

Cp-ligated Rare-earth Complexes

Synthesis of Half-sandwich Rare-earth Complexes

Polymerization and Copolymerization

IV. Summary

Traditional Polymerization Method

- · Undesired allylic radicals lead to branched polymers
- Radical polymerization had no control over stereochemistry.

Ziegler-Natta Catalyst

Ziegler, K., et al. Angew. Chem. Int. Ed. 1955, 67, 426.

Compared with Traditional Polymerization Method

Karl Ziegler Nobel prize in 1963

Giulio Natta Nobel prize in 1963

"excellent work on organometallic compounds has unexpectedly led to new polymerization reactions and thus paved the way for new and highly useful industrial processes."

Natta, G., et al. J. Polym. Sci. 1955, 16, 143.

Mechanistic Study

Activation of Ziegler-Natta catalyst

Initiation step

Grubbs, R. H., et al. J. Am. Chem. Soc. 1982, 104, 4479.

Mechanistic Study

Grubbs, R. H., et al. J. Am. Chem. Soc. 1982, 104, 4479.

The Second-Generation Catalysts

Formation of methyl aluminoxanes (MAO)

Kaminsky, W., et al. Angew. Chem. Int. Ed. 1976, 15, 630.

The Third-Generation Catalysts

Marks, T. J., et al. J. Am. Chem. Soc. 1991, 113, 3623.

- I. Background
- II. Ziegler-Natta Catalyst

Unique Properties of Rare-earth Elements

Cp-ligated Rare-earth Complexes

Synthesis of Half-sandwich Rare-earth Complexes

Polymerization and Copolymerization

IV. Summary

Unique Properties of Rare-earth Elements

- > The most stable oxidation state of rare-earth metals is 3+.
- > The oxidative addition and reductive elimination processes are generally difficult.
- Structures are mainly governed by the sterics rather than the electron numbers.
- Rare-earth metal ions generally show strong Lewis acidity and oxophilicity.
- > Unique candidates for the formation of excellent single-site catalysts.

Cp-ligated Rare-earth Complexes

Hou, Z., et al. *J. Am. Chem. Soc.* **2004**, *126*, 13910. Hou, Z., et al. *Acc. Chem. Res.* **2015**, *8*, 2209.

Synthesis of Half-sandwich Rare-earth Complexes

General Process for Polymerization of Styrene

Syndiospecific Polymerization of Styrene

run	Ln	[M]/[Ln]	t (min)	yield ^b (%)	activityc	sPS ^d (%)	Mn ^e (×10 ⁻⁴)	M _w /M _n e	7m ^f (°℃)	efficiency ^g (%)
1	Sc	500	1	100	≥3125	100	8.85	1.38	271	58
2	Sc	700	1	100	≥4376	100	11.96	1.29	271	61
3	Sc	1000	1	100	≥6034	100	13.55	1.45	272	77
4	Sc	1500	1	100	≥9362	100	18.96	1.55	271	82
5	Sc	2000	1	100	$\geq 12\ 498$	100	26.94	1.36	272	77
6	Sc	2500	1	87	13 618	100	37.86	1.37	273	60
7	Υ	100	30	60	13	100	1.07	1.39	269	
8	Gd	100	30	69	15	100	0.92	1.35	269	
9	Lu	100	30	25	6	100	0.49	1.38	268	

Hou, Z., et al. J. Am. Chem. Soc. 2004, 126, 13910.

Syndiospecific Copolymerization of Styrene with Ethylene

run	styrene (mmol)	ethylene (atm)	yield (g)	activity ^b	PS cont ^c (mol %)	Mn ^d (×10 ⁻⁴)	M _w /M _n ^d	7 _m e (°C)
1	0	1	0.55	786	0	17.23	1.72	127
2	21	0	0.45	643	100	6.04	1.41	268
3	10	1	0.40	600	13	7.92	1.14	n.o.f
4	21	1	0.79	1123	56	11.13	1.19	214
5	31	1	0.92	1314	65	16.26	1.17	233
6	41	1	1.62	2314	87	15.09	1.26	245

Hou, Z., et al. J. Am. Chem. Soc. 2004, 126, 13910.

Copolymerization of Functionalized Propylenes and Styrene

Hou, Z., et al. Angew. Chem. Int. Ed. **2020**, 59, 7173.

atactic copolymer AP : P = 48 : 52

Possible Mechanism of The Co-syndiospecific Alternating Copolymerization

Hou, Z., et al. Angew. Chem. Int. Ed. 2020, 59, 7173.

Visseaux, M., et al. *Macromolecules* **2005**, *38*, 3162. Cui, D., et al. *Chem. - Eur. J.* **2010**, *16*, 14007. Hou, Z., et al. *Acc. Chem. Res.* **2015**, *8*, 2209. Anwander, R., et al. *Angew. Chem. Int. Ed.* **2008**, *47*, 775. Hou, Z., et al. *J. Am. Chem. Soc.* **2019**, *141*, 12624. Hou, Z., et al. *Angew. Chem. Int. Ed.* **2020**, *59*, 7173.

Synthesis of Self-Healing Polymers

run	[Sc]	[AP]/ [Sc]	Time (min)	yiəld (g)	AP conv (%)	activity (g mol-Sc ⁻¹ h ⁻¹ atm ⁻¹)	M _n (x 10 ³ g mol ⁻¹)	M _w /M _n	AP/E	⊤ _g (℃)	⊤ _m (℃)
1	1	200/1	10	0.20	67	-	5	1.65	100/0	60	150
2	2	200/1	15	0.70	91	1.4 x 10 ⁵	41 (P1)	1.68	39/61	-6	124
3	2	500/1	5	0.91	95	1.1 x 10 ^s	90 (P2)	1.58	39/61	-4	123
4	2	1000/1	15	1.61	85	6.4 x 10 ⁵	173 (P3)	1.94	41/59	4	127
5	2	1000/1	6 h	3.05	84	5.1 x 10 ⁴	344 (P4)	1.70	45/55	5	125
6	2	1000/1	24 h	8.35	92	3.5 x 10 ⁴	552 (P5)	1.98	46/54	6	125

Hou, Z., et al. J. Am. Chem. Soc. 2019, 141, 3249.

Hou, Z., et al. J. Am. Chem. Soc. 2019, 141, 3249.

Mechanical Properties of The Copolymers

Hou, Z., et al. J. Am. Chem. Soc. 2019, 141, 3249.

Hou, Z., et al. J. Am. Chem. Soc. 2019, 141, 3249.

Mechanical Properties of The Copolymers

Hou, Z., et al. J. Am. Chem. Soc. 2019, 141, 3249.

- I. Background
- II. Ziegler-Natta Catalyst
- **III. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization**

Unique Properties of Rare-earth Elements

Cp-ligated Rare-earth Complexes

Synthesis of Half-sandwich Rare-earth Complexes

Polymerization and Copolymerization

IV. Summary

Summary

- ◆ The high stability, strong Lewis acidity, and unsaturated C−C bond affinity of the 3+ metal ions make rare-earth metals unique candidates for the formation of excellent single-site catalysts.
- ◆ Half-Sandwich Rare-Earth Catalysts possess a more electropositive, less sterically crowded metal center and can show much higher and unique catalytic activity for the polymerization and copolymerization of a wide range of olefins.

Thanks!