

Mechanistic Aspects of Organic Proton-Coupled Electron Transfer

Reporter: Zhou Qiang Supervisor: Prof. Lu

Theory of PCET

- 1

Proton-Coupled Electron Transfer (PCET)

 $6CO_2 + 6H_2O \xrightarrow{hv} C_6H_{12}O_6 + 6O_2 \quad \Delta G^0 = -675 \text{ kcal/mol}$ $2H_2O \xrightarrow{hv} O_2 + 4e^- + 4 \text{ H}^+$

Hydrogen Atom Transfer (HAT)

$$X-H \longrightarrow A \xrightarrow{HAT} X' + H-A$$

Concerted transfer of a proton and an electron from one H-X bond

Concerted or stepwise transfer of the proton and electron No need to originate from the same bond, or even the same molecule

Proton H⁺ Hydrogen H- Hydride H⁻

$$X - H \longrightarrow A \xrightarrow{HAT} X + H - A$$

Concerted transfer of a proton and an electron from one H-X bond

BDFE: Bond Dissociation Free Energy

Bond Dissociation

At 298 K

ΔG^{0}_{PT} = -*RT* ln(*Ka*) = -2.303*RT* pK*a*(X-H) = -(1.37 kcal mol⁻¹) pK*a*(X-H)

 $E^{0}(X^{-}/X) \begin{bmatrix} E^{0}(H^{+}/H) & \Delta G^{0}_{ET} = -FE^{0} = -(23.06 \text{ kcal mol}^{-1} \text{ V}^{-1})E^{0} \\ = -(23.06 \text{ kcal mol}^{-1} \text{ V}^{-1}) (E^{0}(X^{-}/X) + E^{0}(H^{+}/H))$

BDFE (kcal/mol) = $1.37 \text{pK}a(X-H)+23.06 \text{ E}^{0}(X^{-}/X) +23.06 \text{E}^{0}(H^{+}/H)$

Adjustable Contradictory

Constent

Hydrogen Atom Transfer (HAT)

$$X-H \longrightarrow A \xrightarrow{HAT} X' + H-A$$

Concerted transfer of a proton and an electron from one H-X bond

Concerted or stepwise transfer of the proton and electron No need to originate from the same bond, or even the same molecule

Theory - Thermodynamical

福里

大學

Proton-Coupled Electron Transfer

	Hydrogen Atom Acceptor Pairs						Hydrogen Atom Donor Pairs					
	Oxidant	Base	E ⁰ (V)	pKa	'BDFE'		Reductant	Acid	E ⁰ (V)	рКа	'BDFE'	
-	Fe ^{III} (bpy) ₃	pyridine	0.70	12.5	87		Cp ₂ Co	PhCO ₂ H	-1.34	21.5	54	
	[*] Ru ^{ll} (bpy) ₃	acetate	0.39	23.5	96	((CpMe ₅) ₂ Co	lutidinium	-1.47	14.1	40	
	[*] Ru ^{ll} (bpz) ₃	lutidine	1.07	14.1	100		Ru ^l (bpy) ₃	pyridinium	-1.71	12.5	33	
*lr ^{III}	(dF(CF ₃)ppy) ₂ (bpy)	DMAP	1.0	18	103		Ru ^l (bpy) ₃	PTSA	-1.71	8.6	27	

大學

Proton-Coupled Electron Transfer

 \triangle G(PCET) = BDFE - "BDFE"

復旦大學

Mayer, J. M. et al., Chem. Rev. 2010, 110, 6961-7001.

Kinetic Advantages of CPET

復四大學

Theory - Kinetics

Kinetic Advantages of CPET

TEMPOH

Fe^{III}H₂bim³⁺ + TEMPO $\Delta G^{\circ}_{ET} = +52 \text{ kcal mol}^{-1}$ Fe^{II}Hbim⁺ + TEMPOH⁺⁺ $\Delta G^{\circ}_{PT} = +41 \text{ kcal mol}^{-1}$ $\Delta G^{\ddagger}_{obs} = +17.7 \text{ kcal mol}^{-1}$ $\Delta G^{\circ} = +5.2 \text{ kcal mol}^{-1}$

*Not drawn to scale

$$\begin{split} \mathsf{ET}: \mathsf{Fe}^{II}\mathsf{H}_{2}\mathsf{bim}^{2+} + \mathsf{TEMPO} &\to \mathsf{Fe}^{III}\mathsf{H}_{2}\mathsf{bim}^{2+} + \mathsf{TEMPO}^{-} \\ & \Delta \mathsf{G}^{0}_{\mathsf{ET}} = -\mathsf{FE}^{0} \\ & = -(23.06 \text{ kcal mol}^{-1} \text{ V}^{-1}) \left[\left(\mathsf{E}^{0}(\mathsf{XH}^{+/0}) + \mathsf{E}^{0}(\mathsf{Y}^{0/-}) \right] \right] \\ \mathsf{PT}: \mathsf{Fe}^{II}\mathsf{H}_{2}\mathsf{bim}^{2+} + \mathsf{TEMPO} &\to \mathsf{Fe}^{II}\mathsf{H}\mathsf{bim}^{2+} + \mathsf{TEMPOH}^{++} \\ & \Delta \mathsf{G}^{0}_{\mathsf{PT}} = -\mathsf{RT}\mathsf{In}(\mathsf{Ka}) \\ & = -(1.37 \text{ kcal mol}^{-1}) \left[\mathsf{pKa}(\mathsf{YH}^{+}) - \mathsf{pKa}(\mathsf{XH}) \right] \\ & \Delta \mathsf{G}^{\sharp}_{\mathsf{CPET} obs} = +17.7 \text{ kcal/mol} \end{split}$$

Mayer, J. M. et al., Chem. Rev. 2010, 110, 6961-7001.

One-Dimensional Marcus treatment

大學

Linear correlation of rate constant (*k*) vs equilibrium constant (K_{eq}) is the important evidence for concerted e⁻ and H⁺ transfer.

Theory - Kinetics

An Intramolecular Multisite CPET process

復旦大學

Mayer, J. M. *et al., J. Am. Chem. Soc.* **2003**, *125*, 10351–10361. Mayer, J. M. *et al., J. Phys. Chem. A* **2012**, *116*, 12249–12259.

Theory - Kinetics

A Termolecular MS-CPET Process

Mayer, J. M. *et al., J. Am. Chem. Soc.* **2003**, *125*, 10351–10361. Mayer, J. M. *et al., J. Phys. Chem. A* **2012**, *116*, 12249–12259. 大學

復日

Mechanistic Study of PCET in Organic Synthesis

Saveant, J. M.*et al., Angew Chem Int Ed.* **2010**, *49*, 3803–3806

Mechanistic Study – The influence of pH

$$k_{PCET} = k_1 + k_2 \times 10^{0.5 \text{pH}} + k_3 \times 10^{\text{pH}}$$

D region : A pure ET from TyrO

C region : PT-limited PTET with OH- as proton acceptor around

B region : CPET around pH = 7 with water as proton acceptor

復旦大學

A region : ET-limited ETPT

Hammarstrom, L et al., J. Am. Chem. Soc. 2012, 134, 16247-16254

Knowles, R. R. et al., J. Am. Chem. Soc. 2016, 138, 10794-10797F

Stern-Volmer Studies

Investigating Long-range PCET

pKa (collidine H⁺) = 15.0 E_{1/2} (Ir^{II}/Ir^{III}) = -1.07 V vs Fc/Fc⁺ E_{1/2} (*Ir^{III}/Ir^{II}) = +1.30 V vs Fc/Fc⁺

A A

20

Knowles, R. R. et al., J. Am. Chem. Soc. 2016, 138, 10794-10797F

	MeO									
НО	2	NMe ₂	NMe	eo Come	Me	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right $	MeO			
Base	$E_{\rm p/2}~(V)$	0.39	0.69	0.92	0.96	1.18	1.22	1.22	1.24	1.27
2-MeO-pyridine pK _a = 9.9	'BDFE' Yield (%)	77 0	84 0	90 0	91 0	96 0	97 0	97 0	97 <5	98 8
pyridine	'BDFE'	81	88	93	94	99	100	100	101	101
р <i>К</i> _а = 12.5	Yield (%)	0	0	0	<5	6	16	14	5	19
CF₃COO- pKa = 12.5	'BDFE' Yield (%)	81 0	88 0	93 0	94 0	99 23	100 87	100 79	101 97	101 18
collidine	'BDFE'	84	91	97	98	103	104	104	104	105
р <i>К</i> а =15	Yield (%)	0	0	<5	7	86	86	82	41	84

'BDFE' = 23.06 $E_{1/2}$ (Ar^{0/·+}) + 1.37 pKa (base) + 54.9 (rt in MeCN)

Knowles, R. R. et al., J. Am. Chem. Soc. 2016, 138, 10794-10797F

22

復日大學

 $[H_20]$ (0-1M) and constant $[SmI_2]$ (10 mM) and [substrate] (100 mM)

Mechanistic Study - Enamines

Mayer, J. M. et al., J. Am. Chem. Soc. 2017, 139, 10687-10692

復旦大學

Proton-Coupled Electron Transfer

Oxidative Process

Reductive Process

$$M^{n} + X - H - \cdots : B \xrightarrow{PCET} X + B - H^{+} + M^{n-1} \xrightarrow{X} + B - H^{+} + M^{n-1} \xrightarrow{PCET} \overset{H}{\longrightarrow} X + M^{n} + B$$

A strong strategy for homolytic activation

Thermodynamical Advantages

Kinetic Advantages

大學

Adjustable effective BDFE

Lower barrier

Enable the direct homolytic activation of many common organic functional groups

.....

Prospect

Theory

- Detailed mechanism study in bioprocess
- Kinetic barrier

•

Enantioselective PCET catalysis

Application

- Selectively C-H homolysis
- Application in total synthesis

Thank you!

Reporter: Zhou Qiang Supervisor: Prof. Lu

Oxidative PCET - Thiols

MacMillan, W. C., et al., J. Am. Chem. Soc. 2014, 136, 626-629

Oxidative PCET - Thiols

Stern-Volmer quenching experiment

PT/ET OR CPET

Oxidative PCET - Thiols

Thiol-Ene Reaction

Ph'

C₆F₅∖_

92%

77%

, Ph

Ph'

92%

,Ph

77%

COOMe

OH

,Ph

90%

98%

復旦大學

Reductive PCET - Ketone

Electrocatalytic CPET

Reduction weakens bond by 40 kcal/mol !

復旦大學

Peters, J. C. et al., Science 2020, 369, 850-854

34

Reductive PCET - Enones

Enones

復四大學

Oxidative PCET - Alcohols

復旦大學

Ring-Opening of Cyclic Alcohols

Knowles, R. R. et al., J. Am. Chem. Soc. 2019, 141, 1457-1462

Reductive PCET - Enones

Oxidative PCET - Alcohols

Hydroetherification

復四大學

Knowles, R. R. et al., Angew. Chem. Int. Ed. 2020, 59, 11845–11849

Mayer, J. M. et al., Sci. Adv. 2018, 4, eaat5776 Alexanian, E. J. et al., J. Am. Chem. Soc. 2019, 141, 13253-13260

Oxidative PCET - C-H bond

 $2 \text{ mol} [\text{Ir}(dF(CF_3)ppy)_2(d(CF_3)bpy)]PF_6$

"BDFE" ~ 105 kcal/mol

Alexanian, E. J. et al., J. Am. Chem. Soc. 2019, 141, 13253-13260

.0

80

60

Reductive PCET - Ketone

Asymmetric Aza-Pinacol Cyclization

Knowles, R. R. et al., J. Am. Chem. Soc. 2013, 135, 17735-17738.

Mechanistic Study - Ketone 復旦大學 **Ketone** н~о∕н Ketyl radical [Red] Sm^{III} H-A Śm" H_2O High reductive potential Weak O-H bond Н Ru^{ll} 2 mol% [Ru(bpy)₃](BArF)₂ 5 mol% (PhO)₂PO₂H Ar COOMe 1.5 equiv. BT ВΤ hv cis ,Ph THF, 26 W CFL, rt Ph .CO₂Me MeOOC⁻ -1, HO Ru^l Ph Ph^{\\`} H-X trans PCET BT ΡΤ н н Ph Đ, Ru ŃTs xΘ ET Ru^{II} COOMe hv 73% 11:1 dr 80%, 3.4:1 dr 87%, 4.8:1 dr x^Θ HO. Ph Rull н Ph xΘ x[⊖] Ru^{II} Me MeOOC⁻ MeOOC⁻ HO HO MeÓ Ph^{```} Ph'` 42 ВΤ 78% 12:1 dr 78%, 1.2:1 dr 82%, 16:1 dr

Flowers II, R. A. *et al., J. Am. Chem. Soc.* **2016**, *138*, 8738–8741 Knowles, R. R. *et al., J. Am. Chem. Soc.* **2013**, *135*, 10022–10025