Transfer hydrocyanation of alkenes and alkynes

Reporter: Cengceng Du Supervisor: Dr. Zhangjie Shi

Content

Introduction of nitriles

Shuttle catalysis

Transfer hydrocyanation

The derivatives of nitriles

Vogt, D. et al. *ChemCatChem* **2010**, *2*, 590.

The synthesis of nitriles

The synthesis of nitriles

Choudary, B. M. et al. *Tetrahedron*. 2008, 64, 3351.
Otaka, K. et al. *J. Org. Chem.* 1991, 56, 6740.
Inoue, S. et al. *J. Am. Chem. Soc.* 1992, *114*, 7965.
Liu, Y. H. et al. *J. Am. Chem. Soc.* 2018, *140*, 7385.

Akamanchi, K. G. et al. *J. Org. Chem.* **2007**, *7*2, 662. Mizuno, N. et al. *Angew. Chem. Int. Ed.* **2007**, *4*6, 3922.

$$C_6H_5CH_3 + NH_3 \xrightarrow{cat} C_6H_5CN$$

Mowry, D. F. et al. Chem. Rev. 1948, 42, 189.

Traditional hydrocyanation of alkenes and alkynes

New strategy for hydrocyanation of alkenes and alkynes

Alkene metathesis

Chauvin, Y. et al. *Makromol Chem*, **1971**, *141*, 161. Schrock, R. et al. *J. Am. Chem. Soc.* **1981**, *103*, 1440. Grubbs, R. H. et al. *J. Am. Chem. Soc. 1992*, *114*, 3974.

New strategy for hydrocyanation of alkenes and alkynes

Morandi, B. et al. ACS Catal. 2016, 6, 7528.

The examples of shuttle catalysis

Catalytic transfer hydromagnesiation

Greenhalgh, M. D. et al. J. Am. Chem. Soc. 2012, 134, 11900.

Hydrogen cyanide as shuttle catalysis

Studer, A. et al. *J. Am. Chem. Soc.* **2018**, *140*, 16353. Oestreich, M. et al. *Angew. Chem. Int. Ed.* **2019**, *58*, 3579.

Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation

No HCN! Reversible! Anti-Markovnikov selectivity! Broad subtrate scope (60 examples)!

Morandi, B. et al. Science 2016, 351, 832.

Reversible transfer hydrocyanation of nitriles and alkenes

Catalytic Transfer Hydrocyanation (forward reaction)

Catalytic Retro-Hydrocyanation (reverse reaction)

driving froce

Selective manipulation of the alkene/nitrile equilibrium

Exploration of hydrocyanation substrate scope

Exploration of hydrocyanation substrate scope

Scale-up Using an Inexpensive Reagent

Exploration of retro-hydrocyanation substrate scope

Exploration of retro-hydrocyanation substrate scope

Stereoselective Installation of a Chiral Quaternary Vinyl Group

Mechanism of the Transfer Hydrocyanation

Unlocking Mizoroki–Heck-type reactions of aryl cyanides using transfer hydrocyanation as a turnover-enabling step

No HCN! Irreversible! Mizoroki–Heck-type!

Morandi, B. et al. Chem. Eur. J. 2016, 22, 15629.

Traditional Mizoroki–Heck reaction

Heck, R. F. et al. Org. React. 1982, 27, 345.

Ar-CN + $L_n M^0$ Lewis acid

Ar-L_nM^{II}-CN

Jacobsen, E. N. et al. *J. Am. Chem. Soc.* **2008**, *130*, 12594. Shi, Z. J. et al. *Org. Lett.* **2009**, *11*, 3374. Jiao, N. et al. *Chem. Rev.* **2014**, *114*, 8613.

Mechanism

$$H-L_nM^{II}-X + R \xrightarrow{----} R \xrightarrow{H} X + L_nM^0$$

Scope of the intramolecular MH-type reaction

Synthesis of polysubstituted naphthalene compounds

Scope of the intermolecular Heck-type reaction

The application in the coupling reaction

Proposed mechanism

Mechanistic experiments

Mechanistic experiments

Mechanistic experiments

Cooperative palladium/lewis acid-catalyzed transfer hydrocyanation of alkenes and alkynes

No HCN! Anti-Markovnikov selectivity! Broad scope! Chain walking!

Studer, A. et al. J. Am. Chem. Soc. 2018, 140, 16353.

CHD core as reagents for functional group transfer reactions

intermediate

Studer, A. et al. *Org. Lett.* **2001**, *3*, 2357. Studer, A. et al. *Chem. Commun.* **2002**, 1592.

intermediate

Oestreich, M. et al. Angew. Chem. Int. Ed. 2013, 52, 11905.
Oestreich, M. et al. Org. Lett. 2017, 19, 1898.
Oestreich, M. et al. Angew. Chem. Int. Ed. 2015, 54, 12158.
Oestreich, M. et al. Angew. Chem. Int. Ed. 2015, 54, 1965.

Palladium/lewis acid-cocatalyzed transfer hydrocyanation

DPEphos

Transfer hydrocyanation of various alkenes and alkynes

Transfer hydrocyanation of various alkenes and alkynes

Mechanistic studies

These results show that the H atom is derived from the methylene group

Proposed mechanism

Transfer hydrocyanation of α - and α , β -substituted styrenes catalyzed by boron lewis acids

No HCN! Markovnikov selectivity!

Oestreich, M. et al. Angew. Chem. Int. Ed. 2019, 58, 3579.

CHD core as reagents for functional group transfer reactions

Oestreich, M. et al. Chem. Sci. 2017, 8, 4688.

Oestreich, M. et al. Org. Lett. 2016, 18, 2463.

Transfer hydrocyanation catalyzed by boron lewis acids

	Ph Ph $+$ R H $-$	Lewis acid → Me CN 1,2-F ₂ C ₆ H ₄ → Ph + 〔 120 °C, 16 h	Ph Me + Me Ph Ph $Ph Ph$	'n
	4-3a 4-1 R = H 4-2 R = CH ₃	4-4a	4-5a 4-6a	
Entry	Lewis acid (mol%)	Surrogate	4-4a/4-5a/4-6a	Conv. [%]
1	B(C ₆ F ₅) ₃ (20)	4-1	42:14:44	> 99
2	B(C ₆ F ₅) ₃ (100)	4-1	20:70:10	> 99
3	B(C ₆ F ₅) ₃ (100)	4-2	18:79:3	> 99
4	BCl ₃ (20)	4-2	99:1:0	> 99
5	BCl ₃ (20)	4-1	94:3:3	> 99
6	BCl ₃ (10)	4-2	93:7:0	> 99
7	BBr ₃ (20)	4-2	88:11:1	> 99
8	BF ₃ ·OEt ₂ (20)	4-2	38:62:0	85
9	B(OMe) ₃ (20)	4-2	-	0
10	AICI ₃ (20)	4-1	40:49:11	> 99
11	AICI ₃ (20)	4-2	47:52:1	99

Transfer hydrocyanation of various 1,1-diarylethylenes with BCl₃

Transfer hydrocyanation of trisubstituted alkenes with (C₆F₅)₂BCI

Mechanism studies

Stoichiometric NMR experiment

Proposed mechanism

Summary

- 1 Morandi, B. et al. *Science* **2016**, *351*, 832. 3 Studer, A. et al. *J. Am. Chem. Soc.* **2018**, *140*, 16353.
- 2 Morandi, B. et al. Chem. Eur. J. 2016, 22, 15629. 4 Oestreich, M. et al. Angew. Chem. Int. Ed. 2019, 58, 3579

Entry	Cat	Surrogate	Driving forces	Selectivity
1	Ni/Al	Me H Me CN	gas release	Anti-Markovnikov
2	Ni/Al or Pd/LA	CN CN	conjugated system	
3	Pd/LA		aromatization	Anti-Markovnikov
4	LA		aromatization	Markovnikov

Prospect

I am very grateful to Teacher Shi, Teacher Fang and Teacher Liu for their encouragement and guidance!

I am very grateful to all the members in Shi group for their help!

I am very grateful to everyone for listening, and I sincerely look forward to your comments and suggestions!