

Alkyne Metathesis based on Molybdenum and

Tungsten Alkylidyne Complexes

Speaker:Gengmu Li (李耕牧)Supervisors:Prof. Zhangjie Shi

2023.12.22

1. Introduction

Development of Molybdenum and Tungsten Alkylidyne Catalysts
 2.1. Monodentate Ligand (First and Second Generation)
 2.2. Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

1. Introduction

Development of Molybdenum and Tungsten Alkylidyne Catalysts
 2.1. Monodentate Ligand (First and Second Generation)
 2.2. Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

Shape-persistent molecular architectures

Alkene metathesis? or Alkyne metathesis!

(c) Furstner, A., et al. Angew. Chem. Int. Ed. 2013, 52, 355; (d) Furstner, A., et al. Chem. Commun. 2002, 18, 2182.

Introduction

Representative Homogeneous Alkyne Metathesis Catalysts

Et

復旦大學

Reactions of alkylidynes with alkynes

1. Introduction

2. Development of Molybdenum and Tungsten Alkylidyne Catalysts 2.1. Monodentate Ligand (First and Second Generation) 2.2. Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

Initial Exploration and Limitation

Schrock 1981

The remarkable Lewis acidity of W made this complex incompatible with substrates containing heteroatoms such as nitrogen heterocycles, divalent sulfur, and carbonyl-containing substrates, like ketones and aldehydes

(a) Mortreux, A., et al. Chem. Commun. 1974, 4, 786; (b) Brizius, G., et al. J. Am. Chem. Soc. 2000, 122, 12435; (c) Wengrovius, J.H., et al. J. Am. Chem. Soc. 1981, 103, 3932.

First Generation Catalyst with Amido Ligand

Fürstner 1999

An important modification by Moore in 2004

(a) Fürstner, A., et al. J. Am. Chem. Soc. 1999, 121, 9453; (b) Moore, J. S., et al. J. Am. Chem. Soc. 2004, 126, 329.

First Generation Catalyst with Amido Ligand

12

(a) Fürstner, A., et al. J. Am. Chem. Soc. 1999, 121, 9453; (b) Fürstner, A., et al. Chem.-Eur. J. 2001, 7, 5299; (c) Fürstner, A., et al. Org. Lett. 2001, 3, 221.

First Generation Catalyst with Amido Ligand

¹³

(a) Moore, J. S., et al. J. Am. Chem. Soc. 2004, 126, 329; (b) Moore, J. S., et al. Chem. Commun. 2003, 7, 832; (c) Moore, J. S., et al. J. Am. Chem. Soc. 2018, 140, 5825.

Catalyst with Alkoxy Ligand

7 will form stable metallacyclobutadiene (MCBD)

Tamm, M., et al. Angew. Chem. Int. Ed. 2012, 51, 13019.

Catalyst with Alkoxy Ligand

Catalyst with Alkoxy Ligand

(a) Tamm, M., et al. Angew. Chem. Int. Ed. 2007, 46, 8890; (b) Tamm, M., et al. Chem. Eur. J. 2010, 16, 8868;
(c) Schrock, R. R., et al. Angew. Chem. Int. Ed. 2003, 42, 4555; (d) Tamm, M., et al, Org. Biomol. Chem. 2007, 5, 523.

Second Generation Catalyst with Silanol Ligand 領部 復史大學

Commercially available

(a) Fürstner, A., et al. J. Am. Chem. Soc. 2009, 131, 27, 9468; (b) Fürstner, A., et al. J. Am. Chem. Soc. 2010, 132, 11045.

Beneficial Effect of 5Å Molecular Sieves

Fürstner, A., et al. J. Am. Chem. Soc. 2010, 132, 11045.

Second Generation Catalyst with Silanol Ligand (復興) 復興大學

Fürstner, A., et al. J. Am. Chem. Soc. 2010, 132, 11045.

1. Introduction

2. Development of Molybdenum and Tungsten Alkylidyne Catalysts

2.1. Monodentate Ligand (First and Second Generation)

2.2. Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

Drawbacks of the Monodentate Ligand ——Small Alkyne Polymerization

Zhang, W., et al. Angew. Chem. Int. Ed. 2011, 50, 8478.

Multidentate Catalyst System:

- (1) stronger complexation;
- (2) spatial blocking of binding site inhibits the undesired alkyne polymerization.

The N-Mo coordination would lower the catalyst activity by increasing the electron density on the Mo center

(a) Zhang, W., et al. Adv. Synth. Catal. 2012, 354, 2073; (b) Zhang, W., et al. Adv. Synth. Catal. 2013, 355, 885; (c) Schrock, R. R., Chem. Rev. 2002, 102, 145.

25

(a) Zhang, W., et al. Adv. Synth. Catal. 2012, 354, 2073; (b) Zhang, W., et al. Adv. Synth. Catal. 2013, 355, 885.

Zhang, W., et al. Nat Commun. 2021, 12, 1136.

а

Fourth Generation— "Canopy Catalysts"

🛇 C1

01

Si1

02

03

Only sp²-hybridized C atoms reduces the degrees of conformational freedom.

Ar

Ph

Ph

Ph

Preorganized structure shows a cyclic array of hydrogen bonds between -Si-OH units.

(a) Furstner, A., et al. Angew. Chem. Int. Ed. 2019, 58, 15690; (b) Furstner, A., et al. J. Am. Chem. Soc. 2020, 142, 11279.

Fourth Generation— "Canopy Catalysts"

29

(a) Furstner, A., et al. Angew. Chem. Int. Ed. 2019, 58, 15690; (b) Furstner, A., et al. J. Am. Chem. Soc. 2020, 142, 11279.

New Air-Stable Alkylidyne Catalysts

Furstner, A., et al. J. Am. Chem. Soc. 2023, 145, 26993.

New Air-Stable Alkylidyne Catalysts

Only trace impurities caused by hydrolysis

(a) Furstner, A., et al. J. Am. Chem. Soc. 2023, 145, 26993; (b) Buchmeiser, M. R., et al. Eur. J. Inorg. Chem. 2023, 26, 649

Rational Design of the Catalysts

Appropriate ligands can regulate the Lewis acidity of the metal center, allowing both processes to proceed smoothly

pKa values (in DMSO) of selected ROH and amines, and general reactivity of $M(\equiv CR)X_3$ (M = Mo, W) with the alkyne EtC \equiv CEt at ambient temperature.

(a) Furstner, A., et al. J. Am. Chem. Soc. 2022, 143, 15538; (b) Jia, G., et al. J. Am. Chem. Soc. 2022, 144, 12546; (c) Neese, F., et al. ACS Catal. 2021, 11, 9086.

Intermediate of Alkyne Metathesis Catalysts

Surprising Metallatetrahedrane Complex

Furstner, A., et al. J. Am. Chem. Soc. 2021, 143, 5643.

Tautomerization Between A and B

Tautomerization Between C and D

Furstner, A., et al. J. Am. Chem. Soc. 2021, 143, 5643.

1. Introduction

Development of Molybdenum and Tungsten Alkylidyne Catalysts
 Monodentate Ligand (First and Second Generation)
 Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

Total Synthesis of Neurymenolide A

Furstner, A., et al. Angew. Chem., Int. Ed. 2012, 51, 6929.

Total Synthesis of Casbane Diterpenes

40

(a) Furstner, A., et al. Angew. Chem., Int. Ed. 2015, 54, 6241; (b) Furstner, A., et al. Angew. Chem., Int. Ed. 2021, 60, 5316.

Total Synthesis of Amphidinolide F

Polysubstituted diyne 40 have three free hydroxyl-group. "Canopy Catalyst" 22 successfully gave the ring closure product 41, while catalyst 12 fail to accomplish this process.

(a) Furstner, A., et al. Angew. Chem., Int. Ed. 2013, 52, 9534; (b) Furstner, A., et al. Chem.-Eur. J. 2015, 21, 2398.

Total Synthesis of Njaoamine C

Grubbs catalyst only Grubbs cat, CH₂Cl₂, reflux gave 10-20% of the monocyclized compound \mathbf{O} 50 and 1-2% of 51 49 **50** (10 - 20%) **51** (1 - 2%) **22** (20 mol%), 5 steps MS 5Å, toluene, 60 °C 29% Mes 91% OBoc 0-1 Ph **BocHN** Ph Ph H_2N^{-1} 52 ·ОН 54 53 22 **NHBoc** (-) Njaoamine C `^{OBoc} 42

Furstner, A., et al. J. Am. Chem. Soc. 2023, 145, 21197.

Mobius Tris((ethynyl)[5]helicene) Macrocycle

Synthesis of Cycloparaphenyleneacetylene

Moore, J. S., et al. J. Am. Chem. Soc. 2016, 138, 13814.

Rectangular Prism

Zhang, W., et al. J. Am. Chem. Soc. 2011, 133, 51, 20995.

1. Introduction

Development of Molybdenum and Tungsten Alkylidyne Catalysts
 2.1. Monodentate Ligand (First and Second Generation)
 2.2. Multidentate Ligand (Third and Fourth Generation)

3. Application

4. Summary and Outlook

• The current inability to perform reactions in water or other protic media and the still largely missing compatibility with strongly acidic groups.

• Compared with alkyne metathesis, metathesis reactions of alkylidynes with heterotriple bonded species are less known and worth more exploration.

Thanks

Supporting Information

Supporting Information

