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Hydroboration-amination

Transition Metal Catalysis
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Challenges:

• Controlling selectivity

• Negative entropy

• Electrostatic repulsion

Gaunt, M. J. et. al. Chem. Rev. 2020, 120, 2613–2692
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One-pot Hydroboration−amination

7Lalic, G. et. al. J. Am. Chem. Soc. 2012, 134, 6571–6574.

Lalic (2012)

Selected Substrate Proposed Mechanism
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Proposed Mechanism

One-pot Hydroboration−amination
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Metal-Involved Hydroamination

Hartwig (2013)

Hartwig, J. F. et. al. J. Org. Chem. 2013, 78, 8909−8914. 10

Primary Amines Scope

Secondary Amines Scope



Buchwald (2013)

Buchwald, S. L. et. al. J. Am. Chem. Soc. 2013, 135, 15746−15749.
Miura, M.; Hirano, K. et. al. Angew. Chem. Int. Ed. 2013, 52, 10830−10834. 11
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Buchwald (2014)

Buchwald, S. L. et. al. J. Am. Chem. Soc. 2014, 136, 15913−15916. 12
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Buchwald (2018)

Buchwald, S. L. et. al. J. Am. Chem. Soc. 2018, 140, 15976–15984. 13
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Proposed Mechanism Kemp Elimination

Proposed Reduction Pathway

Metal-Involved Hydroamination
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Radical Transfer Hydroamination

Studer, A. et. al. J. Am. Chem. Soc. 2007, 129, 4498–4503.

Studer (2007)
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Selected Substrate
Proposed Mechanism



Studer, A. et. al. Angew. Chem. Int. Ed. 2008, 47, 779–782.

Studer (2008)
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Studer, A. et. al. Chem. - Asian J. 2011, 6, 1197–1209.

Studer (2011)
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Selected Substrate
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Studer (2019)
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Knowles, R. R. et. al. Science 2017, 355, 727–730.

Knowles (2017)
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Proposed Mechanism Thermodynamic Challenges

Deuterium Labeling Studies

*using the composite method CBS-QB3

Radical Transfer Hydroamination



Knowles, R. R. et. al. J. Am. Chem. Soc. 2019, 141, 16590–16594.

Knowles (2019)
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Radical Transfer Hydroamination
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Kinetic Competition Study
Stern−Volmer Quenching Studies

Radical Transfer Hydroamination
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Complete reaction cycle

Knowles, R. R.; Nocera, D. G. et. al. J. Am. Chem. Soc. 2021, 143, 10232-10242.



Knowles, R. R. et. al. J. Am. Chem. Soc. 2018, 140, 741–747.

Knowles (2018)
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Proposed Mechanism
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Doyle (2021)

Doyle, A. G. et. al. J. Am. Chem. Soc. 2021, 143, 18331–18338. 28
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Stern−Volmer Quenching Studies

Evaluation of P(V) Reductive Elimination

Alternative mechanism: PCET

Alternative mechanism: P(V) intermediate

Radical Transfer Hydroamination



Schmidt (2018)

Schmidt, V. A. et. al. J. Am. Chem. Soc. 2018, 140, 12318–12322. 31
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Radical Transfer Hydroamination



Yang (2021)
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Yang, H. et. al. Org. Chem. Front. 2021, 8, 273–277.

Proposed Mechanism Deuterium Labeling Studies

Radical Transfer Hydroamination



Yoshida (2020)

Yoshida, H. et. al. J. Am. Chem. Soc. 2020, 142, 12708–12714. 33
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Hydroboration−
amination

Metal-catalyzed
Hydroamination

Radical Transfer
Hydroamination

Substrate scope 
of alkene

Terminal alkenes Tri-substituted alkenes
Terminal alkenes

Tetra-substituted alkenes
Terminal alkenes
Aromatic alkenes

Enantioselectivity No Yes No

Equiv. of 
substrate

Low equiv., but extra 
hydroboration reagents

Low equiv., but extra [Si]-
H reagents

1-10 equiv.

Product Tertiary amines Primary and tertiary 
amines

Primary to tertiary 
amines

Summary
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N-radical sources

Thermodynamic Driving Force

PCET

Direct Oxidation

α or β Scission

Summary
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• Cheaper photocatalyst instead of Iridium

• Enantioselectivity of radical transfer process

by adding metals or ligands

• The anti-Markovnikov hydroamination of 

aromatic amines

Outlooks



Thanks for your attention!
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